Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exchange reactions enthalpy

Enthalpy of activation, 10, 156-160 Entropy of activation, 10, 156-160 compared with AV, 169 concentration units and, 168 precision of, 168 Enzyme catalysis, 90-94 Equilibria, complexation, 145-148 Exchange reactions, kinetics of,... [Pg.278]

The sulfoxidation of normal Cl4-CI7 paraffins with sulfur dioxide, oxygen, and water is performed under UV radiation in parallel reactors (1 in Fig. 3). The reaction enthalpy is dissipated by cooling of the paraffin in heat exchangers. The 30- to 60-kW UV lamps are cooled by a temperature-controlled water cycle. The reaction mixture leaving the reactors separates spontaneously into two phases in 2. The lighter paraffin phase is recirculated to the reactors. The composition of the heavy raw acid phase is shown in Table 5. [Pg.150]

One of the issues of the industrial process design is related to the heat released by this reaction. A temperature rise will decrease the acetic acid yield, not only because the equilibrium constant becomes lower (the reaction is exothermic see section 2.9) but also because it will reduce the enzyme activity. It is therefore important to keep the reaction temperature within a certain range, for instance, by using a heat exchanger. However, to design this device we need to know the reaction enthalpy under the experimental conditions, and this quantity cannot be easily found in the chemical literature. [Pg.9]

The third and last example in this chapter illustrates a case where kinetic data were used to derive relative enthalpies for a series of similar reactions. Consider the ligand (phosphine) exchange reaction 15.15 (see figure 14.5 forthe structure of the complex),... [Pg.225]

In a donor solvent the iodide ions is much more strongly solvated than the neutral donor and hence the donor properties of the iodide ion are lowered in solution. This event has been described as the thermodynamic solvatation effect. It becomes increasingly important with an increase of the ratio of the free enthalpy of solvation to the free enthalpy of the ligand exchange reaction. [Pg.88]

Since VO (acac)2 is a weak acceptor the free enthalpy of the ligand exchange reaction is low and hence the thermodynamic solvation effect is considerable. [Pg.89]

The significance of these quantities is analogous to that for the activation parameters for homogeneous self-exchange reactions. Thus, AH equals the activation enthalpy for conditions... [Pg.186]

All chemical reactions involve heat exchange. Reactions that release heat are called exothermic, and those that consume heat are called endothermic. Heat exchange is measured as the enthalpy change AH (the heat of reaction). This corresponds to the heat exchange at constant pressure. In exothermic reactions, the system loses heat, and AH is negative. When the reaction is endothermic, the system gains heat, and AH becomes positive. [Pg.20]

The enthalpies of the formal exchange reaction 15 between corresponding oxygenated and deoxygenated species... [Pg.131]

Klumpp and Sinnige proceeded similarly, using ec-butyl alcohol to protodelithi-ate the anisoles and other lithiated aryl ethers in di-n-butyl ether. The protodelithiation enthalpies for all the lithiated aryl ethers, as monomers, from the latter study are listed in Table 3. The reaction enthalpies for the o- and p-lithioanisoles are ca 20 kJmop more negative from Reference compared to the ones from Reference, presumably due to differences in the reaction media. From the exchange reaction, equation 17, and the enthalpies of formation of phenyl lithium, benzene and the relevant aryl ether, the enthalpies of formation of the lithiated aryl ethers can be derived. The calculated values are shown in Table 3. [Pg.132]

Lithium cyciopentadienide (s), LiCp, may be formally protodelithiated to cyclopen-tadiene (Iq) by a simple Li/H exchange with an accompanying reaction enthalpy of 182.4 kJmoPL The large endothermicity is not unexpected for the nominally aromatic cyclopentadienyl anion. By comparison, for formal protodelithiation of solid LiOH to liquid H2O is 199.1 kJmol . ... [Pg.134]

As was the case for the alkyl hydroperoxides in reaction 4, the enthalpies of the oxy-gen/hydrocarbon double exchange reaction 8 for dialkyl peroxides are different depending on the classification of the carbon bonded to oxygen. For R = Me, Et and f-Bu, the liquid phase values are —4, 24.6 and 52.7 kJmoR, respectively, and the gas phase values are 0.1, 25.7 and 56.5 kJmoR, respectively. For the formal deoxygenation reaction 9, the enthalpies of reaction are virtually the same for dimethyl and diethyl peroxide in the gas phase, —58.5 0.6 kJ moR. This value is the same as the enthalpy of reaction of diethyl peroxide in the liquid phase, —56.0 kJ moR (there is no directly determined liquid phase enthalpy of formation of dimethyl ether). Because of steric strain in the di-ferf-butyl ether, the enthalpy of reaction is much less negative, but still exothermic, —17.7 kJmol (Iq) and —19.6 kJmol (g). [Pg.154]

In the area of reaction energetics. Baker, Muir, and Andzehn have compared six levels of theory for the enthalpies of forward activation and reaction for 12 organic reactions the unimolecular rearrangements vinyl alcohol -> acetaldehyde, cyclobutene -> s-trans butadiene, s-cis butadiene s-trans butadiene, and cyclopropyl radical allyl radical the unimolecular decompositions tetrazine -> 2HCN -F N2 and trifluoromethanol -> carbonyl difluoride -F HF the bimolecular condensation reactions butadiene -F ethylene -> cyclohexene (the Diels-Alder reaction), methyl radical -F ethylene -> propyl radical, and methyl radical -F formaldehyde -> ethoxyl radical and the bimolecular exchange reactions FO -F H2 FOH -F H, HO -F H2 H2O -F H, and H -F acetylene H2 -F HC2. Their results are summarized in Table 8.3 (Reaction Set 1). One feature noted by these authors is... [Pg.285]

From the temperature dependence of the equilibrium constant for proton exchange between some deuterated and undeuterated primary and secondary amines, monitored by high-pressure mass spectrometry, the reaction enthalpy, or difference in proton affinity, could be measured.101 Protonation of the deuterated amine is favored by 0.2kcalmol-1, varying with structure by 0.1 kcal mol-1 but with no obvious pattern. However, the equilibrium, at least for CH3CD2NHCH3, appears to be entropy driven, not enthalpy. [Pg.147]

The rate constants (kex) of the electron exchange reactions between ZnTPP+ and ZnTPP [Eq. (1)] were determined using Eq. (2), where AHms( and AH°msi are the maximum slope linewidths of the ESR spectra in the presence and absence of ZnTPP+, respectively, and P, is a statistical factor [14]. From the linear plots of (AHmsi - Afi°msl) and [ZnTPP] at various temperatures are obtained the self-exchange electron-transfer rate constant (k ). The Arrhenius plots are shown in Fig. 13.3 together with the observed activation enthalpies (AHols ), where the effect of diffusion (kdiff) is taken into account. The AHol/ values are all positive and decrease in order toluene > MeCN > CH2C12 [16],... [Pg.469]


See other pages where Exchange reactions enthalpy is mentioned: [Pg.131]    [Pg.1440]    [Pg.131]    [Pg.1440]    [Pg.13]    [Pg.227]    [Pg.331]    [Pg.167]    [Pg.6]    [Pg.348]    [Pg.211]    [Pg.203]    [Pg.251]    [Pg.88]    [Pg.331]    [Pg.337]    [Pg.383]    [Pg.134]    [Pg.410]    [Pg.159]    [Pg.1067]    [Pg.182]    [Pg.40]    [Pg.171]    [Pg.397]    [Pg.35]    [Pg.222]    [Pg.297]    [Pg.344]    [Pg.548]    [Pg.251]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Reactions enthalpies

© 2024 chempedia.info