Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl radical resonance

Stabilizing resonances also occur in other systems. Some well-known ones are the allyl radical and square cyclobutadiene. It has been shown that in these cases, the ground-state wave function is constructed from the out-of-phase combination of the two components [24,30]. In Section HI, it is shown that this is also a necessary result of Pauli s principle and the permutational symmetry of the polyelectronic wave function When the number of electron pairs exchanged in a two-state system is even, the ground state is the out-of-phase combination [28]. Three electrons may be considered as two electron pairs, one of which is half-populated. When both electron pahs are fully populated, an antiaromatic system arises ("Section HI). [Pg.330]

Allyl radical is a conjugated system in which three electrons are delocalized over three carbons The resonance structures indicate that the unpaired electron has an equal probability of being found at C 1 or C 3 C 2 shares none of the unpaired electron... [Pg.395]

Both resonance forms of the allylic radical must be equivalent... [Pg.397]

Alkenes react with N bromosuccimmide (NBS) to give allylic bromides NBS serves as a source of Br2 and substitution occurs by a free radical mechanism The reaction is used for synthetic purposes only when the two resonance forms of the allylic radical are equivalent Otherwise a mixture of isomeric allylic bromides is produced... [Pg.416]

Notice that m converting one resonance form to the next electrons are moved m exactly the same way as was done with allyl radical... [Pg.441]

Resonance theory can also account for the stability of the allyl radical. For example, to form an ethylene radical from ethylene requites a bond dissociation energy of 410 kj/mol (98 kcal/mol), whereas the bond dissociation energy to form an allyl radical from propylene requites 368 kj/mol (88 kcal/mol). This difference results entirely from resonance stabilization. The electron spin resonance spectmm of the allyl radical shows three, not four, types of hydrogen signals. The infrared spectmm shows one type, not two, of carbon—carbon bonds. These data imply the existence, at least on the time scale probed, of a symmetric molecule. The two equivalent resonance stmctures for the allyl radical are as follows ... [Pg.124]

Reaction Mechanism. High temperature vapor-phase chlorination of propylene [115-07-17 is a free-radical mechanism in which substitution of an allyhc hydrogen is favored over addition of chlorine to the double bond. Abstraction of allyhc hydrogen is especially favored since the allyl radical intermediate is stabilized by resonance between two symmetrical stmctures, both of which lead to allyl chloride. [Pg.33]

The stabilizing effects of vinyl groups (in allylic radicals) and phenyl groups (in benzyl radicals) are very significant and can be satisfactorily rationalized in resonance terminology ... [Pg.692]

The chain propagation step consists of a reaction of allylic radical 3 with a bromine molecule to give the allylic bromide 2 and a bromine radical. The intermediate allylic radical 3 is stabilized by delocalization of the unpaired electron due to resonance (see below). A similar stabilizing effect due to resonance is also possible for benzylic radicals a benzylic bromination of appropriately substituted aromatic substrates is therefore possible, and proceeds in good yields. [Pg.299]

The allylic resonance may give rise to formation of a mixture of isomeric allylic bromides, e.g. 6 and 8 from but-l-ene. The product ratio depends on the relative stability of the two possible allylic radical species 5 and 7 ... [Pg.300]

Active Figure 10.3 An orbital view of the allyl radical. The p orbital on the central carbon can overlap equally well with a p orbital on either neighboring carbon, giving rise to two equivalent resonance structures. Sign in afwww.thomsonedu.com to see a simulation based on this figure and to take a short quiz. [Pg.341]

Simple alkyl halides can be prepared by radical halogenation of alkanes, but mixtures of products usually result. The reactivity order of alkanes toward halogenation is identical to the stability order of radicals R3C- > R2CH- > RCH2-. Alkyl halides can also be prepared from alkenes by reaction with /V-bromo-succinimide (NBS) to give the product of allylic bromination. The NBS bromi-nation of alkenes takes place through an intermediate allylic radical, which is stabilized by resonance. [Pg.352]

We saw in Section 6.9 that the stability order of alkyl carbocations is 3° > 2° > 1° > —CH3. To this list we must also add the resonance-stabilized allvl and benzyl cations. Just as allylic radicals are unusually stable because the... [Pg.376]

Resolution (enantiomers), 307-309 Resonance, 43-47 acetate ion and, 43 acetone anion and. 45 acyl cations and, 558 allylic carbocations and, 488-489 allylic radical and, 341 arylamines and, 924 benzene and, 44. 521 benzylic carbocation and, 377 benzylic radical and, 578 carbonate ion and. 47 carboxylate ions and, 756-757 enolate ions and, 850 naphthalene and, 532 pentadienyl radical and. 48 phenoxide ions and, 605-606 Resonance effect, 562 Resonance forms, 43... [Pg.1314]

The allyl radical is better stabilized by resonance with the adjacent double bond than the cyanomethylene radical and is, therefore, less reactive. [Pg.109]

Radicals with adjacent Jt-bonds [e.g. allyl radicals (7), cyclohexadienyl radicals (8), acyl radicals (9) and cyanoalkyl radicals (10)] have a delocalized structure. They may be depicted as a hybrid of several resonance forms. In a chemical reaction they may, in principle, react through any of the sites on which the spin can be located. The preferred site of reaction is dictated by spin density, steric, polar and perhaps other factors. Maximum orbital overlap requires that the atoms contained in the delocalized system are coplanar. [Pg.13]

This is generally attributed to resonance stabilization of the allylic radical ... [Pg.902]

The observation that in the case of PCSO there is no formation of propanol while allyl alcohol is formed from ACSO agrees with the resonance stabilization of the allyl radical and hence weaker bond for S-allyl than for S-propyl. The yield of allyl alcohol from irradiation of ACSO is considerably greater than that from S-allyl-L-cysteine, probably due to energy delocalization by the four p electrons of the S atom. [Pg.910]

Since A and B are equivalent resonance structures, the allyl radical should be much more stable than either, that is, much more stable than a 10 radical => the allyl radical is even more stable than a 3° radical. [Pg.505]

This is not a proper resonance structure for the allyl radical because it does not contain the same number of unpaired electrons as CH2=CHCH2. ... [Pg.507]

Hydrocarbons containing one or more triple bonds in addition to double bonds have been excluded from the tile, as have been radicals (e.g. the allyl radical C3H5 ) and aromatic molecules, i.e. molecules for which more than one unexcited resonance structure (Kekule structure) can be written. Consequently, hydrocarbons such as phenyl-substituted polyenes, or annulenes — bridged or unbridged—have not been included. [Pg.178]


See other pages where Allyl radical resonance is mentioned: [Pg.397]    [Pg.297]    [Pg.397]    [Pg.341]    [Pg.341]    [Pg.343]    [Pg.1106]    [Pg.1106]    [Pg.986]    [Pg.173]    [Pg.114]    [Pg.1106]    [Pg.1106]    [Pg.504]    [Pg.504]    [Pg.504]    [Pg.627]    [Pg.743]    [Pg.253]   
See also in sourсe #XX -- [ Pg.395 ]

See also in sourсe #XX -- [ Pg.395 ]

See also in sourсe #XX -- [ Pg.395 ]

See also in sourсe #XX -- [ Pg.212 , Pg.213 , Pg.214 ]

See also in sourсe #XX -- [ Pg.370 ]

See also in sourсe #XX -- [ Pg.212 , Pg.213 , Pg.214 ]

See also in sourсe #XX -- [ Pg.376 , Pg.377 ]




SEARCH



Allyl radical

Allyl radical resonance description

Allyl radical resonance stabilization

Allyl radical resonance structures

Allyl resonance

Allylic radical, molecular orbital resonance

Allylic radical, resonance stability

Allylic radicals

Allylic radicals resonance delocalization

Radical allylation

Radical resonance-stabilized allyl

Radicals) allylations

Resonance allylic radical

Resonance allylic radical

Resonance allylic radical and

Resonance energy allyl radical

Resonance, allyl anion/cation radical

Stability of the Allyl Radical Resonance Revisited

© 2024 chempedia.info