Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene oxide Conversion

So large a value of k requires either yl or x2 to approach zero. If yl approaches zero, y2 approaches unity, and the phase-equilibrium expression for water(2) makes x2 = 32, which is impossible. Thus x2 must approach zero, and the phase-equilibrium equation requires y2 also to approach zero. This means that for all practical purposes the reaction goes to completion. For initial amounts of 3 moles of ethylene oxide and 1 mole of water, the water present is entirely reacted along with 1 mole of the ethylene oxide. Conversion of the oxide is therefore 33.3 %. [Pg.526]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

To prevent further oxidation of ethylene oxide, the ethylene conversion of the commercial processes is typically between 10 and 20%. [Pg.455]

The per pass ethylene conversion in the primary reactors is maintained at 20—30% in order to ensure catalyst selectivities of 70—80%. Vapor-phase oxidation inhibitors such as ethylene dichloride or vinyl chloride or other halogenated compounds are added to the inlet of the reactors in ppm concentrations to retard carbon dioxide formation (107,120,121). The process stream exiting the reactor may contain 1—3 mol % ethylene oxide. This hot effluent gas is then cooled ia a shell-and-tube heat exchanger to around 35—40°C by usiag the cold recycle reactor feed stream gas from the primary absorber. The cooled cmde product gas is then compressed ia a centrifugal blower before entering the primary absorber. [Pg.457]

Silver-containing catalysts are used exclusively in all commercial ethylene oxide units, although the catalyst composition may vary considerably (129). Nonsdver-based catalysts such as platinum, palladium, chromium, nickel, cobalt, copper ketenide, gold, thorium, and antimony have been investigated, but are only of academic interest (98,130—135). Catalysts using any of the above metals either have very poor selectivities for ethylene oxide production at the conversion levels required for commercial operation, or combust ethylene completely at useful operating temperatures. [Pg.458]

These equations hold if an Ignition Curve test consists of measuring conversion (X) as the unique function of temperature (T). This is done by a series of short, steady-state experiments at various temperature levels. Since this is done in a tubular, isothermal reactor at very low concentration of pollutant, the first order kinetic applies. In this case, results should be listed as pairs of corresponding X and T values. (The first order approximation was not needed in the previous ethylene oxide example, because reaction rates were measured directly as the total function of temperature, whereas all other concentrations changed with the temperature.) The example is from Appendix A, in Berty (1997). In the Ignition Curve measurement a graph is made to plot the temperature needed for the conversion achieved. [Pg.105]

The six-position may be functionalized by electrophilic aromatic substitution. Either bromination (Br2/CH2Cl2/-5°) acetylation (acetyl chloride, aluminum chloride, nitrobenzene) " or chloromethylation (chloromethyl methyl ether, stannic chloride, -60°) " affords the 6,6 -disubstituted product. It should also be noted that treatment of the acetyl derivative with KOBr in THF affords the carboxylic acid in 84% yield. The brominated crown may then be metallated (n-BuLi) and treated with an electrophile to form a chain-extender. To this end, Cram has utilized both ethylene oxide " and dichlorodimethyl-silane in the conversion of bis-binaphthyl crowns into polymer-bound resolving agents. The acetylation/oxidation sequence is illustrated in Eq. (3.54). [Pg.49]

The composition of the gas mixture, which is introduced into the tube bundle reactor (tubes of 6-12 m length and 20-50 mm diameter, filled with the Ag catalyst) consists of 15-50 vol % ethylene, 5-9% oxygen, as much as 60% methane as dilution gas, and 10-15% carbon dioxide. The reaction therefore proceeds above the upper explosion limit. The ethylene conversion runs up to 10% per cycle through the reactor. The ethylene oxide selectivity amounts to 75-83 % maximum. The formed ethylene oxide is recovered by scrubbing with water and the newly formed carbon dioxide is separated from the cycle gas, e.g., by hot potash washing process. [Pg.33]

Figure 6.4. Examples for the four types of global classical promotion behaviour. Work function increases with the x-axis. (a) Steady-state (low conversion) rates of ethylene oxide (EtO) and C02 production from a mixture of 20 torr of ethylene and 150 torr of 02 for various Cs predosed coverages on Ag(lll) at 563 K19 (b) Rate of water-gas shift reaction over Cu(l 11) as a function of sulphur coverage at 612 K, 26 Torr CO and 10 Torr H202° (c) Effect of sodium loading on NO reduction to N2 by C3H6 on Pd supported on YSZ21 at T=380°C (d) Effect of sodium loading on the rate of NO reduction by CO on Na-promoted 0.5 wt% Rh supported on Ti02(4% W03).22... Figure 6.4. Examples for the four types of global classical promotion behaviour. Work function increases with the x-axis. (a) Steady-state (low conversion) rates of ethylene oxide (EtO) and C02 production from a mixture of 20 torr of ethylene and 150 torr of 02 for various Cs predosed coverages on Ag(lll) at 563 K19 (b) Rate of water-gas shift reaction over Cu(l 11) as a function of sulphur coverage at 612 K, 26 Torr CO and 10 Torr H202° (c) Effect of sodium loading on NO reduction to N2 by C3H6 on Pd supported on YSZ21 at T=380°C (d) Effect of sodium loading on the rate of NO reduction by CO on Na-promoted 0.5 wt% Rh supported on Ti02(4% W03).22...
A porphinatoaluminum alkoxide is reported to be a superior initiator of c-caprolactone polymerization (44,45). A living polymer with a narrow molecular weight distribution (M /Mjj = 1.08) is ob-tmned under conditions of high conversion, in part because steric hindrance at the catalyst site reduces intra- and intermolecular transesterification. Treatment with alcohols does not quench the catalytic activity although methanol serves as a coinitiator in the presence of the aluminum species. The immortal nature of the system has been demonstrated by preparation of an AB block copolymer with ethylene oxide. The order of reactivity is e-lactone > p-lactone. [Pg.78]

The effects of reaction temperature, pressure and catalyst amount on the catalytic activity were also studied with TBAC. The results are summarized in Table 2. The conversion of EC increased with the increase of reaction temperature and the amount of catalyst. The conversion of EC and the selectivity of DMC increased as the pressure increased finm 250 psig to 350 psig. But, at the pressure over 350 psig, the EC conversion decreased. Although CO2 is not required for this reaction, its presence alters the reaction profile. It is reported that high pressure of CO2 can inhibit the decomposition of EC to ethylene oxide and C02[12]. [Pg.331]

Sodium hydroxide was introduced into a reactor containing 90 kg of ethylene oxide. The reactor detonated eight hours later. A study was carried out to try to understand what caused the accident. It showed that in similar conditions the temperature of the medium reaches 100°C when 13% of oxide is polymerised, then 160°C at 28% of conversion. At this stage, it takes sixteen seconds for the medium to reach a conversion rate of 100% and a temperature that reaches 700°C. [Pg.266]

Other TUD-l catalysts proven for selective oxidation (16) include Au/Ti-Si-TUD-1 for converting propylene to propylene oxide (96% selectivity at 3.5% conversion see also (17), Ag/Ti-Si-TUD-1 for oxidizing ethylene to ethylene oxide (29% selectivity at 19.8% conversion), and Cr-Si-TUD-1 for cyclohexene to cyclohexene epoxide (94% selectivity at 46% conversion). [Pg.372]

The reactor conversion is 20% and selectivity 80%. Find the heat removal rate from a plant producing 100 tons per day of ethylene oxide (see Table 6.16). Excess oxygen of 10%... [Pg.118]

Ethylene oxide Direct oxidation 100,000 9,000,000 90 0.67 Cost also includes conversion... [Pg.242]

The inference is that the hydrofuranol ring of XL can never be directly formed by the saponification of a 3-tosyl ester of D-glucose, but only indirectly by the intermediate formation and scission of an anhydro ring of the ethylene oxide type. The sequence of reactions involved in the conversion of methyl 3-tosyl-jS-D-gIueoside into methyl 3,6-anhydro-n-glucoside is shown by XXXVI to XL. [Pg.69]

Typically, Cl Basic Red 24 (4-97) has a structure reminiscent of a disperse dye, except that a quaternary ammonium group is carried on the pendant alkyl chain in the coupling component. This coupling component is prepared by reaction of N-ethylaniline with ethylene oxide followed by conversion of the resulting P-hydroxyethyl derivative into the p-... [Pg.218]


See other pages where Ethylene oxide Conversion is mentioned: [Pg.168]    [Pg.168]    [Pg.283]    [Pg.56]    [Pg.359]    [Pg.523]    [Pg.44]    [Pg.457]    [Pg.458]    [Pg.459]    [Pg.192]    [Pg.665]    [Pg.162]    [Pg.545]    [Pg.77]    [Pg.26]    [Pg.267]    [Pg.193]    [Pg.699]    [Pg.639]    [Pg.447]    [Pg.88]    [Pg.27]    [Pg.162]    [Pg.71]    [Pg.80]    [Pg.79]    [Pg.161]    [Pg.221]    [Pg.1336]    [Pg.406]   


SEARCH



Conversion Oxides

Conversion oxidation

Ethylene Conversion

Oxidative conversions

© 2024 chempedia.info