Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene intermediates

Phenomenological evidence for the participation of ionic precursors in radiolytic product formation and the applicability of mass spectral information on fragmentation patterns and ion-molecule reactions to radiolysis conditions are reviewed. Specific application of the methods in the ethylene system indicates the formation of the primary ions, C2H4+, C2i/3+, and C2H2+, with yields of ca. 1.5, 1.0, and 0.8 ions/100 e.v., respectively. The primary ions form intermediate collision complexes with ethylene. Intermediates [C4iZ8 + ] and [CJH7 + ] are stable (<dissociation rate constants <107 sec.-1) and form C6 intermediates which dissociate rate constants <109 sec. l). The transmission coefficient for the third-order ion-molecule reactions appears to be less than 0.02, and such inefficient steps are held responsible for the absence of ionic polymerization. [Pg.249]

Scheme 5 Proposed reaction pathway for the partial oxidation of ethanol. The dehydration into ethylene intermediate is not included. [Pg.89]

Uses. As an ethylating agent as an accelerator in the sulfation of ethylene intermediate in the production by one method of ethyl alcohol from ethylene and sulfuric acid... [Pg.254]

Dechlorination of 1,1,2,2-TCA can follow one of the three pathways in Figure 3 elimination and formation of a partially chlorinated ethylene sequential dechlorination or direct transformation to ethane. The first pathway is unlikely, given the lack of chlorinated ethylene intermediates and the fact that the transformation rate of 1,1,2,2-TCA is an order of magnitude lower than that of PCE, which has a similar rate to TCE, the DCEs and VC. (Schreier 1996) The recalcitrance of the DCA isomers to transformation (Lowry and Reinhard 1999 McNab and Ruiz 1998) implies that sequential dechlorination through DCA does not occur, but this pathway cannot be ruled out because the DCA tests were conducted using Pd/alumina catalysts, rather than the Pd/C used for the 1,1,2,2-TCA and 1,1,2-TCA tests. However, the available data (lack of chlorinated intermediates and the low reactivity of the DCA isomers) suggest that direct transformation is the most probable pathway. [Pg.53]

Assuming carbon-carbon bond cleavage occurs in the route leading to ethylene formation, unsuccessful attempts have been made to isolate the bis(ethylene) intermediate by reacting ethylene with titanocene obtained in a way similar to that described above (41). However, car-bonylation of the reaction mixture yielded cyclopentanone, inferring that titanocene intermediates are produced (43). [Pg.275]

The adsorbates which are more weakly bound to the surface are more likely to interact with other surface species through bond-making processes. An example of this situation will be discussed in Section 3.10.3 where we examine the ethylene hydrogenation mechanism as a function of surface coverage. We specifically analyze the elementary reaction steps for both tt- and cr-bonded ethylene intermediates. [Pg.143]

Studies to determine the nature of intermediate species have been made on a variety of transition metals, and especially on Pt, with emphasis on the Pt(lll) surface. Techniques such as TPD (temperature-programmed desorption), SIMS, NEXAFS (see Table VIII-1) and RAIRS (reflection absorption infrared spectroscopy) have been used, as well as all kinds of isotopic labeling (see Refs. 286 and 289). On Pt(III) the surface is covered with C2H3, ethylidyne, tightly bound to a three-fold hollow site, see Fig. XVIII-25, and Ref. 290. A current mechanism is that of the figure, in which ethylidyne acts as a kind of surface catalyst, allowing surface H atoms to add to a second, perhaps physically adsorbed layer of ethylene this is, in effect, a kind of Eley-Rideal mechanism. [Pg.733]

It is essential to apply both tests, since some symmetrically substituted ethylenic compounds (e.g., ilbene C4H5CH=CHCjHj) react slowly under tbe conditions of the bromine test. With dilute permanganate solution the double bond is readily attacked, probably through the intermediate formation of a cis diol ... [Pg.1058]

Extensive studies on the Wacker process have been carried out in industrial laboratories. Also, many papers on mechanistic and kinetic studies have been published[17-22]. Several interesting observations have been made in the oxidation of ethylene. Most important, it has been established that no incorporation of deuterium takes place by the reaction carried out in D2O, indicating that the hydride shift takes place and vinyl alcohol is not an intermediate[l,17]. The reaction is explained by oxypailadation of ethylene, / -elimination to give the vinyl alcohol 6, which complexes to H-PdCl, reinsertion of the coordinated vinyl alcohol with opposite regiochemistry to give 7, and aldehyde formation by the elimination of Pd—H. [Pg.22]

Step 1 Reaction of ethylene and bromine to form a bromonium ion intermediate... [Pg.257]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

Section 14 15 Coordination polymerization of ethylene and propene has the biggest eco nomic impact of any organic chemical process Ziegler-Natta polymer ization IS carried out using catalysts derived from transition metals such as titanium and zirconium tt Bonded and ct bonded organometallic com pounds are intermediates m coordination polymerization... [Pg.617]

The ethylene glycol liberated by reaction (5.L) is removed by lowering the pressure or purging with an inert gas. Because the ethylene glycol produced by reaction (5.L) is removed, proper stoichiometry is assured by proceeding via the intermediate, bis(2-hydroxyethyl) terephthalate otherwise the excess glycol used initially would have a deleterious effect on the degree of polymerization. Poly(ethylene terephthalate) is more familiar by some of its trade names Mylar as a film and Dacron, Kodel, or Terylene as fibers it is also known by the acronym PET. [Pg.302]

EPM/EPDM compounding pLASTOI RS, SYNTHETIC - ETHYLENE-PROPYLENEHIENE RUBBER] (Vol 8) -as glass intermediate [GLASS] (Vol 12)... [Pg.1087]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Chlorine reacts with saturated hydrocarbons either by substitution or by addition to form chlorinated hydrocarbons and HCl. Thus methanol or methane is chlorinated to produce CH Cl, which can be further chlorinated to form methylene chloride, chloroform, and carbon tetrachloride. Reaction of CI2 with unsaturated hydrocarbons results in the destmction of the double or triple bond. This is a very important reaction during the production of ethylene dichloride, which is an intermediate in the manufacture of vinyl chloride ... [Pg.510]

Polyester. Poly(ethylene terephthalate) [25038-59-9] (PET) polyester film has intermediate gas- and water- vapor barrier properties, very high tensile and impact strengths, and high temperature resistance (see Polyesters, thermoplastic). AppHcations include use as an outer web in laminations to protect aluminum foil. It is coated with PVDC to function as the flat or sealing web for vacuum/gas flush packaged processed meat, cheese, or fresh pasta. [Pg.452]

Formaldehyde reacts with syn gas (CO,H2) to produce added value products. Ethylene glycol (EG) may be produced in a two-stage process or the intermediate, glycolaldehyde, isolated from the first stage (65) ... [Pg.493]

A typical oxidation is conducted at 700°C (113). Methyl radicals generated on the surface are effectively injected into the vapor space before further reaction occurs (114). Under these conditions, methyl radicals are not very reactive with oxygen and tend to dimerize. Ethane and its oxidation product ethylene can be produced in good efficiencies but maximum yield is limited to ca 20%. This limitation is imposed by the susceptibiUty of the intermediates to further oxidation (see Figs. 2 and 3). A conservative estimate of the lower limit of the oxidation rate constant ratio for ethane and ethylene with respect to methane is one, and the ratio for methanol may be at least 20 (115). [Pg.341]

Aliphatic Chemicals. The primary aliphatic hydrocarbons used in chemical manufacture are ethylene (qv), propjiene (qv), butadiene (qv), acetylene, and / -paraffins (see Hydrocarbons, acetylene). In order to be useflil as an intermediate, a hydrocarbon must have some reactivity. In practice, this means that those paraffins lighter than hexane have Httle use as intermediates. Table 5 gives 1991 production and sales from petroleum and natural gas. Information on uses of the C —C saturated hydrocarbons are available in the Hterature (see Hydrocarbons, C —C ). [Pg.366]

Acetylene and hydrogen chloride historically were used to make chloroprene [126-99-8]. The olefin reaction is used to make ethyl chloride from ethylene and to make 1,1-dichloroethane from vinyl chloride. 1,1-Dichloroethane is an intermediate to produce 1,1,1-trichloroethane by thermal (26) or photochemical chlorination (27) routes. [Pg.444]


See other pages where Ethylene intermediates is mentioned: [Pg.59]    [Pg.243]    [Pg.1324]    [Pg.5405]    [Pg.5416]    [Pg.32]    [Pg.296]    [Pg.73]    [Pg.77]    [Pg.149]    [Pg.490]    [Pg.2077]    [Pg.59]    [Pg.243]    [Pg.1324]    [Pg.5405]    [Pg.5416]    [Pg.32]    [Pg.296]    [Pg.73]    [Pg.77]    [Pg.149]    [Pg.490]    [Pg.2077]    [Pg.168]    [Pg.71]    [Pg.366]    [Pg.69]    [Pg.135]    [Pg.34]    [Pg.422]    [Pg.58]    [Pg.180]    [Pg.510]    [Pg.362]    [Pg.362]    [Pg.368]    [Pg.382]   
See also in sourсe #XX -- [ Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



Ethylene oxide pyrolysis, intermediates

Intermediate ethylenic bond

© 2024 chempedia.info