Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene derivs carboxylic acids

Types of compounds are arranged according to the following system hydrocarbons and basic heterocycles hydroxy compounds and their ethers mercapto compounds, sulfides, disulfides, sulfoxides and sulfones, sulfenic, sulfinic and sulfonic acids and their derivatives amines, hydroxylamines, hydrazines, hydrazo and azo compounds carbonyl compounds and their functional derivatives carboxylic acids and their functional derivatives and organometallics. In each chapter, halogen, nitroso, nitro, diazo and azido compounds follow the parent compounds as their substitution derivatives. More detail is indicated in the table of contents. In polyfunctional derivatives reduction of a particular function is mentioned in the place of the highest functionality. Reduction of acrylic acid, for example, is described in the chapter on acids rather than functionalized ethylene, and reduction of ethyl acetoacetate is discussed in the chapter on esters rather than in the chapter on ketones. [Pg.321]

Clearly, the slate of chemicals produced from coal-derived synthesis gas will expand as new technologies are developed, and supplies of petroleum and natural gas dwindle. The most likely such chemicals are those for which existing processes have been demonstrated but which presently lack economic merit. Relatively small improvements in technology, shifts in feedstock availability, capital costs, or political factors could enhance the viability of coal-based processes for the production of methanol, ethanol, and higher alcohols, vinyl acetate, ethylene glycol, carboxylic acids, and light olefins. [Pg.587]

The six-position may be functionalized by electrophilic aromatic substitution. Either bromination (Br2/CH2Cl2/-5°) acetylation (acetyl chloride, aluminum chloride, nitrobenzene) " or chloromethylation (chloromethyl methyl ether, stannic chloride, -60°) " affords the 6,6 -disubstituted product. It should also be noted that treatment of the acetyl derivative with KOBr in THF affords the carboxylic acid in 84% yield. The brominated crown may then be metallated (n-BuLi) and treated with an electrophile to form a chain-extender. To this end, Cram has utilized both ethylene oxide " and dichlorodimethyl-silane in the conversion of bis-binaphthyl crowns into polymer-bound resolving agents. The acetylation/oxidation sequence is illustrated in Eq. (3.54). [Pg.49]

A dispersant that can be used in drilling fluids, spacer fluids, cement slurries, completion fluids, and mixtures of drilling fluids and cement slurries controls the rheologic properties of and enhances the filtrate control in these fluids. The dispersant consists of polymers derived from monomeric residues, including low-molecular-weight olefins that may be sulfonated or phosphonated, unsaturated dicarboxylic acids, ethylenically unsaturated anhydrides, unsaturated aliphatic monocarboxylic acids, vinyl alcohols and diols, and sulfonated or phosphonated styrene. The sulfonic acid, phosphonic acid, and carboxylic acid groups on the polymers may be present in neutralized form as alkali metal or ammonium salts [192,193]. [Pg.311]

The possibility that many organic compounds could potentially be precursors of ethylene was raised, but direct evidence that in apple fruit tissue ethylene derives only from carbons of methionine was provided by Lieberman and was confirmed for other plant species. The pathway of ethylene biosynthesis has been well characterized during the last three decades. The major breakthrough came from the work of Yang and Hoffman, who established 5-adenosyl-L-methionine (SAM) as the precursor of ethylene in higher plants. The key enzyme in ethylene biosynthesis 1-aminocyclopropane-l-carboxylate synthase (S-adenosyl-L-methionine methylthioadenosine lyase, EC 4.4.1.14 ACS) catalyzes the conversion of SAM to 1-aminocyclopropane-l-carboxylic acid (ACC) and then ACC is converted to ethylene by 1-aminocyclopropane-l-carboxylate oxidase (ACO) (Scheme 1). [Pg.92]

The Surlyn A ionomers (E. I. du Pont de Nemours Co.) are believed to be derived from copolymers of ethylene with minor amounts of methacrylic acid which are treated subsequently, so that substantial amounts of the carboxylic acid are converted to the sodium or other metal carboxylate. Resins similar to the one studied in this work contain about 10 weight % methacrylic acid. The ash (sodium carbonate) indicates about 40% neutralization. This resin, which contains 0.05% Santo-white Powder (Monsanto Chemical Co.), a phenolic antioxidant, is of medium molecular weight—i.e., probably corresponding to an ethylene homopolymer with a melt flow index around 20 (17). The molecular weight distribution is broad (17). [Pg.152]

Acrylic acid [79-10-7] - [AIR POLLUTION] (Vol 1) - [ALDEHYDES] (Vol 1) - [ALLYL ALCOHOL AND MONOALLYL DERIVATIVES] (Vol 2) - [MALEIC ANHYDRIDE, MALEIC ACID AND FUMARIC ACID] (Vol 15) - [POLYESTERS, UNSATURATED] (Vol 19) - [FLOCCULATING AGENTS] (Vol 11) - [CARBOXYLICACIDS - SURVEY] (Vol 5) -from acetylene [ACETYLENE-DERIVED CHEMICALS] (Vol 1) -from acrolein [ACROLEIN AND DERIVATIVES] (Vol 1) -acrylic esters from [ACRYLIC ESTER P OLYMERS - SURVEY] (Vol 1) -from carbon monoxide [CARBON MONOXIDE] (Vol 5) -C-21 dicarboxylic acids from piCARBOXYLIC ACIDS] (Vol 8) -decomposition product [MAT. ETC ANHYDRIDE, MALEIC ACID AND FUMARIC ACID] (Vol 15) -economic data [CARBOXYLIC ACIDS - ECONOMIC ASPECTS] (Vol 5) -ethylene copolymers [IONOMERS] (Vol 14) -in floor polishes [POLISHES] (Vol 19) -in manufacture of ion-exchange resins [ION EXCHANGE] (V ol 14) -in methacrylate copolymers [METHACRYLIC POLYMERS] (Vol 16) -in papermaking [PAPERMAKING ADDITIVES] (Vol 18)... [Pg.12]

Several chemical approaches may be used to form the amine- or carboxyl-terminal dextran derivative. The simplest procedure may be to prepare polyaldehyde dextran according to the procedure of Section 2.1, and then make the spacer arm derivative by reductively animating an amine-containing organic compound onto it. For instance, short diamine compounds such as ethylene diamine or diaminodipropylamine (3,3 -iminotepropylamine) can be coupled in excess to polyaldehyde dextran to create an amine-terminal derivative. Carboxyl-terminal derivatives may be prepared similarly by coupling molecules such as 6-aminocaproic acid or p-alanine to polyaldehyde... [Pg.643]

The glow electrolysis technique (electrolysis with an anode immersed in the solution and the cathode above the surface) at 600-800 V dc and 300-500 mA converts a solution of starch into ethylene, methane, hydrogen, and both carbon mono- and dioxides.323 Electrochemical methods for converting polysaccharides and other biomass-derived materials have been reviewed briefly by Baizer.324 These methods are mainly oxidations along a potential gradient, which decreases the activation energy of the reactants. Starch in 5 M NaOH solution is oxidized on platinum electrodes to carboxylic acids with an activation energy of about 10 kcal/mol. In acidic media oxidation takes place at C-l followed by decarboxylation and oxidation at the C-2 and C-6 atoms.325... [Pg.308]

Ethylene reacts with salts of saturated carboxylic acids containing at least one hydrogen atom attached to the a-carbon atom ( ). The ethylation which is catalyzed by alkali metals and their derivatives and which occur at 150-250° under ethylene pressure, can be presented as follows ... [Pg.218]

When lithiated phenothiazine is treated with methyl sulfate, acetyl chloride, and ethylene oxide 10-substituted derivatives are obtained. Lithium salts of carboxylic acids, however, lead to 1-phenothiazinyl ketones Scheme 14 presents the evidence for the structures assigned to these substances. [Pg.419]

The reaction of 10-alkylphenothiazines with butyllithium followed by the action of reagents other than CO2, namely lithium salts of carboxylic acids, (0 3)2804, CH2O, ethylene oxide, or A-methyl formanilide, yielded 4-substituted derivatives in all cases, and the lithium carboxylates gave also a little of the 3-substituted phenothia-zines. [Pg.420]


See other pages where Ethylene derivs carboxylic acids is mentioned: [Pg.627]    [Pg.450]    [Pg.91]    [Pg.91]    [Pg.134]    [Pg.110]    [Pg.1045]    [Pg.114]    [Pg.147]    [Pg.251]    [Pg.724]    [Pg.173]    [Pg.89]    [Pg.606]    [Pg.472]    [Pg.377]    [Pg.606]    [Pg.32]    [Pg.1045]    [Pg.282]    [Pg.437]    [Pg.921]    [Pg.73]    [Pg.135]    [Pg.89]    [Pg.769]    [Pg.160]    [Pg.24]    [Pg.135]    [Pg.282]    [Pg.437]    [Pg.921]    [Pg.842]    [Pg.894]    [Pg.329]   
See also in sourсe #XX -- [ Pg.31 , Pg.32 ]




SEARCH



Carboxylic acid derivates

Carboxylic acid derivs

Ethylene acidity

Ethylene acids

Ethylene carboxylated)

Ethylene carboxylation

© 2024 chempedia.info