Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene aluminum-alkyl-based

Several commercial processes are used to produce high-density polyethylene. All employ more moderate pressures and most also use lower temperatures than the low-density polyethylene processes. The Ziegler-developed process uses the mildest conditions, 200-400 kPa (2 atm) and 50-75°C, to polymerize a solution of ethylene in a hydrocarbon solvent using a titanium tetrachloride/aluminum alkyl-based coordination catalyst. After quenching the polymerized mixture with a simple alcohol, the catalyst residues may be removed by extraction with dilute hydrochloric acid or may be rendered inert by a proprietary additive. The product is almost insoluble in the hydrocarbon solvent, so is recovered by centrifuging and drying. The final product is extruded into uniform pellets and cooled for shipping to fabricators. [Pg.741]

Idemitsu Process. Idemitsu built a 50 t x 10 per year plant at Chiba, Japan, which was commissioned in Febmary of 1989. In the Idemitsu process, ethylene is oligomerised at 120°C and 3.3 MPa (33 atm) for about one hour in the presence of a large amount of cyclohexane and a three-component catalyst. The cyclohexane comprises about 120% of the product olefin. The catalyst includes sirconium tetrachloride, an aluminum alkyl such as a mixture of ethylalurninumsesquichloride and triethyl aluminum, and a Lewis base such as thiophene or an alcohol such as methanol (qv). This catalyst combination appears to produce more polymer (- 2%) than catalysts used in other a-olefin processes. The catalyst content of the cmde product is about 0.1 wt %. The catalyst is killed by using weak ammonium hydroxide followed by a water wash. Ethylene and cyclohexane are recycled. Idemitsu s basic a-olefin process patent (9) indicates that linear a-olefin levels are as high as 96% at C g and close to 100% at and Cg. This is somewhat higher than those produced by other processes. [Pg.440]

Zieglei-type catalysts based upon Co, Ni, and Fe and in the presence of aluminum alkyls codimeiize butadiene with olefins such as ethylene. [Pg.344]

Five-coordinate aluminum alkyls are useful as oxirane-polymerization catalysts. Controlled polymerization of lactones102 and lactides103 has been achieved with Schiff base aluminum alkyl complexes. Ketiminate-based five-coordinate aluminum alkyl (OCMeCHCMeNAr)AlEt2 were found to be active catalyst for the ring-opening polymerization of -caprolactone.88 Salen aluminum alkyls have also been found to be active catalysts for the preparation of ethylene carbonate from sc C02 and ethylene oxide.1 4 Their catalytic activity is markedly enhanced in the presence of a Lewis base or a quaternary salt. [Pg.275]

In addition to titanium-based Ziegler-Natta catalysts, vanadium-based systems have also been developed for PE and ethylene-based co-polymers, particularly ethylene-propylene-diene rubbers (EPDM). Homogeneous (soluble) vanadium catalysts produce relatively narrow molecular mass distribution PE, whereas supported V catalysts give broad molecular mass distribution.422 Polymerization activity is strongly enhanced by the use of a halogenated hydrocarbon as promoter in combination with a vanadium catalyst and aluminum alkyl co-catalyst.422,423... [Pg.1039]

Much effort has been devoted during the last 30 years toward understanding the mechanisms operative in the coordination catalysis of ethylene and a-olefin polymerization using Ziegler-Natta systems (metal halide and aluminum alkyl, sometimes with Lewis base modifiers). Aspects of the complex heterogeneous reactions have been elucidated (jL- ) but the intimate mechanistic detail - for example the role of inhibitors and promoters, kinetics and thermodynamics of chain growth, modes of chain transfer and termination - comes primarily from studies of homogeneous catalysts ... [Pg.459]

The coordinate mechanism is based on earlier proposals that describe the organometallic growth reactions of ethylene with aluminum alkyls alone. The reaction is considered anionic because the negative end of the olefin coordinates with an organometallic complex in the surface. Olefin molecules are inserted one at a time between the metal ions in the complex and the all l chain to extend the chain by two carbon atoms (see Fig. 9.11). This mechanism is more satisfying in that the ion pair never becomes widely separated. Addition at an electron-deficient bond bridging the metals in the organometallic complex has also been proposed. [Pg.787]

IV to VIII metals and base metal alkyls of Group II or III metals (Penczek and Premia, 2012 Boor, 1979 Ciardelli, 1992). It arose from the spectacular discovery of Ziegler et al. (1955) that mixtures of titanium tetrachloride and aluminum alkyls polymerize ethylene at low pressures and temperatures and from the equally spectacular discovery by Natta (1955) that the Ziegler catalysts can stereospecifically polymerize monoolefins to produce tactic, crystalline polymers. As can be imagined, these systems can involve many combinations of catalyst components, not all of which are catalytically active or stereospecific. However, we shall be concerned here only with polymerizations involving the commercial elastomers, principally polyisoprene, polybutadiene (Duck and Locke, 1977 Zohuri et al., 2012 Teyssie et al., 1988), and the ethylene-propylene copolymers (Schobel et al., 2012 Ver Strate, 1986 Davis et al., 1996 Noordermeer, 2003 Baldwin and Strate, 1972). [Pg.80]

PREPARATIVE TECHNIQUES Ziegler-Natta polymerization with titanium halide/ aluminum alkyl catalyst and, optionally, ether, ester, or silane activator. Catalyst may be deposited on a magnesium chloride support. Slurry and gas phase processes are used. Catalyst systems based on metallocenes are under development. Typical comonomers are ethylene and 1-butene. [Pg.780]

Some support materials can be rendered Lewis acidic enough to ionize dialkyl metallocenes. Marks and co-workers have reported (33) that alnmina dried at very high temperatures can react at least to some small degree with both thorium-and zirconium-based metallocene dimethyl species to yield active catalysts for polyethylene. The resulting cationic metal center is believed to remain coordinated to the surface through an Al-O-M Lewis acid/base linkage, at least prior to exposure to ethylene. Hybrid surface/cocatalyst systems based on aluminum alkyl-treated clays have been developed (34) in which the solid substrate appears to play some role in promoting polymerization activity far beyond that expected for non-methyl aluminoxane- or trialkylaluminum-activated catalysts. [Pg.4562]

Unlike Ziegler-type catalysts, based mostly on titanium, where an aluminum alkyl cocatalyst is responsible for the formation of a Ti-alkyl bond and initiation of the ethylene polymerization process, chromium-based catalysts do not require such a cocatalyst. [Pg.116]

In order to circumvent the results of Breslow and Reichert that had both reported the increase in ethylene polymerization rate by addition of water to titanium-based metallocene compoimds with other aluminum alkyls, Kaminsky and coworkers continued their research with mostly zirconium-based metallocenes activated by TMA/water mixtures [1-3]. [Pg.177]

Actinide, lanthanide, and yttrium-based catalyst systems showing characteristics of reversible chain transfer in ethylene polymerization are summarized in Table 3. Samsel and Eisenberg claimed to observe the characteristics in ethylene polymerization with several metallocenes of actinides, such as the bis(pentamethylcyclopentadienyl) thorium complex 5 in combination with aluminum alkyl reagents. These systems catalyze the production of aluminum alkyl chain growth products at lower temperatures than those required by the uncatalyzed Ziegler process. The systems were limited to production of low-molecular-weight PE oligomers. [Pg.711]

Kempe reports CCTP in ethylene polymerization using the yttrium-based catalyst system 8/borate combined with a variety of aluminum alkyls.Although many aluminum alkyls show... [Pg.711]

Butene. Commercial production of 1-butene, as well as the manufacture of other linear a-olefins with even carbon atom numbers, is based on the ethylene oligomerization reaction. The reaction can be catalyzed by triethyl aluminum at 180—280°C and 15—30 MPa ( 150 300 atm) pressure (6) or by nickel-based catalysts at 80—120°C and 7—15 MPa pressure (7—9). Another commercially developed method includes ethylene dimerization with the Ziegler dimerization catalysts, (OR) —AIR, where R represents small alkyl groups (10). In addition, several processes are used to manufacture 1-butene from mixed butylene streams in refineries (11) (see BuTYLENEs). [Pg.425]

Other Higher Oleiins. Linear a-olefins, such as 1-hexene and 1-octene, are produced by catalytic oligomerization of ethylene with triethyl aluminum (6) or with nickel-based catalysts (7—9) (see Olefins, higher). Olefins with branched alkyl groups are usually produced by catalytic dehydration of corresponding alcohols. For example, 3-methyl-1-butene is produced from isoamyl alcohol using base-treated alumina (15). [Pg.425]


See other pages where Ethylene aluminum-alkyl-based is mentioned: [Pg.437]    [Pg.437]    [Pg.480]    [Pg.569]    [Pg.1151]    [Pg.96]    [Pg.371]    [Pg.1719]    [Pg.224]    [Pg.1270]    [Pg.118]    [Pg.538]    [Pg.733]    [Pg.480]    [Pg.199]    [Pg.81]    [Pg.88]    [Pg.79]    [Pg.1047]    [Pg.348]    [Pg.10]    [Pg.52]    [Pg.177]    [Pg.661]    [Pg.712]    [Pg.826]    [Pg.331]    [Pg.17]    [Pg.272]    [Pg.24]    [Pg.657]    [Pg.171]    [Pg.411]   


SEARCH



Alkylation ethylene

Aluminum alkyls

© 2024 chempedia.info