Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylbenzene structure

Chlorobenzene/ethylbenzene 50mm Hg Montz structured metal 5 in.-17 in. [Pg.379]

FIG. 1 Molecular structures of the drugs examined in the delivery study the general anesthetics, alkanols (I), halothane (II), enflurane (III), isoflurane (IV), halogenated cyclobutane (V) the local anesthetics, dibucaine hydrochloride (VI), procaine hydrochloride (VII), tetracaine hydrochloride (VIII), lidocaine hydrochloride (IX), benzyl alcohol (X) the endocrine disruptor, bisphenol A (XI), and alkylbenzenes, benzene (XII), toluene (XIII), ethylbenzene (XIV), and propylbenzene (XV). [Pg.773]

There is some increase in selectivity with functionally substituted carbenes, but it is still not high enough to prevent formation of mixtures. Phenylchlorocarbene gives a relative reactivity ratio of 2.1 1 0.09 in insertion reactions with i-propylbenzene, ethylbenzene, and toluene.212 For cycloalkanes, tertiary positions are about 15 times more reactive than secondary positions toward phenylchlorocarbene.213 Carbethoxycarbene inserts at tertiary C—H bonds about three times as fast as at primary C—H bonds in simple alkanes.214 Owing to low selectivity, intermolecular insertion reactions are seldom useful in syntheses. Intramolecular insertion reactions are of considerably more value. Intramolecular insertion reactions usually occur at the C—H bond that is closest to the carbene and good yields can frequently be achieved. Intramolecular insertion reactions can provide routes to highly strained structures that would be difficult to obtain in other ways. [Pg.936]

The objective of this work is to determine the influence of the porous structure (size and shape) and acidity (number and strength of the acid sites) on isomerization selectivity during the conversion of ethylbenzene on bifunctional catalysts PLAI2O3/ 10 MR zeolite. The transformation of EB was carried out on intimate mixtures of Pt/Al203 (PtA) and 10 MR zeolites (ZSM-5, ZSM-22, Ferrierite, EU-1) catalysts and compared to Mordenite reference catalyst activity. [Pg.425]

On ferrierite, ZSM-22 and EU-1 zeolite catalysts, 10MR monodimensional zeolite structures (ID), the main reaction is the isomerization of ethylbenzene (figure la). ZSM-5, 10MR three-dimensional structure (3D) zeolite is very selective in dealkylation (90%) (figure lb) and no deactivation was observed within 8 hours of reaction. This particular selectivity of the zeolite ZSM-5 can be partly explained by the presence of strong acid sites and its porous structure that on one hand promotes the containment of molecules in the pores (presence of 8-9A cages at the intersection of channels) and on the other hand prevents the formation of coke and therefore pore blockage. [Pg.426]

In addition to [Hg( -toluene)2-(GaCI/ )2],168 other mercury-arene complexes of general formula [I Ig( /2-arene)2-(AlCUy have been prepared.169 These include the bis(toluene), bis(o-xylene), and bis(l,2,3-trimethylbenzene) complexes 159, 160, and 161, respectively, whose structures have all been determined (Figure 8). While the arene in 159 and 161 is coordinated in an asymmetrical -fashion, the /2-1,2,3-trim ethylbenzene ligands of 160 form two nearly equal Hg-C bonds of 2.45 and 2.46 A. DFT calculations show that the Hg-arene interactions are mostly ionic. [Pg.449]

An efficient oxidation catalyst, OMS-1 (octahedral mol. sieve), was prepared by microwave heating of a family of layered and tunnel-structured manganese oxide materials. These materials are known to interact strongly with microwave radiation, and thus pronounced effects on the microstructure were expected. Their catalytic activity was tested in the oxidative dehydrogenation of ethylbenzene to styrene [25]. [Pg.350]

The use of stronger acid conditions provides somewhat better synthetic yields of alkanes from alkynes. A useful method consists of treatment of the substrate with a combination of triethylsilane, aluminum chloride, and excess hydrogen chloride in dichloromethane.146 Thus, treatment of phenylacetylene with 5 equivalents of triethylsilane and 0.2 equivalents of aluminum chloride in this way at room temperature yields 50% of ethylbenzene after 1.5 hours. Diphenylacetylene gives a 50% yield of bibenzyl when treated with 97 equivalents of triethylsilane and 2.7 equivalents of aluminum chloride after 2.8 hours. Even 1-hexyne gives a mixture of 44% n -hexane and 7% methylpentane of undisclosed structure when treated with 10 equivalents of triethylsilane and 0.5 equivalent of aluminum chloride for 0.5 hour.146... [Pg.45]

It can be seen that primary and secondary R02 radicals disproportionate with the participation of the a-C—H bond. This explains why the substitution of D in the a-position for H retards the recombination of R02 [/tn//tD =1.9 for ethylbenzene, h/ d = 2.1 for styrene, and h/ d=1-37 for diphenylmethane [179]). Because of this, R02 radicals of unsaturated compounds with a double bond in the a-position to the peroxyl free valence disproportionate more rapidly than structurally analogous aliphatic peroxyl radicals (at 300 K, 2kt = 2x 107 and 3.8 x 106 L mol-1 s-1 for R02 radicals of cyclohexene and cyclohexane, respectively [180]). Among the products of secondary peroxyl radicals disproportionation, carbonyl compound and alcohol were found in a ratio of 1 1 at room temperature (in experiments with ethylbenzene [181], tetralin [103], and cyclohexane [182-184],... [Pg.91]

Figure 7.24 Photoelectron emission microscopy images of two Fe304 surfaces that were used as model catalyst in the dehydrogenation of ethylbenzene to styrene at 870 K, showing carbonaceous deposits (bright). These graphitic deposits grow in dots and streaks on a surface of low defect density, but form dendritic structures on surfaces rich in point and step detects (from Weiss et al. f731). Figure 7.24 Photoelectron emission microscopy images of two Fe304 surfaces that were used as model catalyst in the dehydrogenation of ethylbenzene to styrene at 870 K, showing carbonaceous deposits (bright). These graphitic deposits grow in dots and streaks on a surface of low defect density, but form dendritic structures on surfaces rich in point and step detects (from Weiss et al. f731).
The effect of different zeolite structures and pore systems is also reflected in the data of Table II. With the intermediate pore ZSM-5, xylene is apparently much less reactive than ethylbenzene, both as an alkyl donor and acceptor, than it is with the large pore zeolites, ZSM-4 and synthetic mordenite. [Pg.280]

In our calculations we will first discuss our results starting with both the 2-and 3- octyl cations (the 4- octyl cation cannot form a 1,6-p-H-structure). The n-octane conversion to aromatics, as described by Davis (8), is a good test of our proposed mechanisms, for several reasons (1) his experimental observation would require the formation of approximately equal amounts of 1,2-dimethylcyclohexane (o-xylene) and ethylcyclohexane (ethylbenzene), even though in our mechanism the structure of the needed 1,6-p-H cation intermediates are quite different, and (2) the formation of to- and p-xylene requires a prior isomerization of n-octane to 2- and 3- methylheptane, and this must be a faster reaction than the dehydrocyclization (or at least competitive with it). If our mechanisms are valid, we should be able to reproduce some aspects of the above results. [Pg.297]

Figure 8.34 Strong, sharp absorption at 1700 cm 1 indicating a carbonyl group. No other significant patterns except the C-H pattern on the low side of 3000 cm . It is an aliphatic aldehyde or ketone. Figure 8.35 A benzene ring is indicated because of the band on the high side of 3000 cm-1 and the series of weak peaks between 1700 and 2000 cm . Aliphatic C-H bonds are also indicated (absorption bands on the low side of 3000 cm-1). Possibly ethylbenzene, or a similar structure. Figure 8.34 Strong, sharp absorption at 1700 cm 1 indicating a carbonyl group. No other significant patterns except the C-H pattern on the low side of 3000 cm . It is an aliphatic aldehyde or ketone. Figure 8.35 A benzene ring is indicated because of the band on the high side of 3000 cm-1 and the series of weak peaks between 1700 and 2000 cm . Aliphatic C-H bonds are also indicated (absorption bands on the low side of 3000 cm-1). Possibly ethylbenzene, or a similar structure.
The optimum UNIQUAC interaction parameters u, between methylcyclohexane, methanol, and ethylbenzene were determined using the observed liquid-liquid data, where the interaction parameters describe the interaction energy between molecules i and j or between each pair of compounds. Table 4 show the calculated value of the UNIQUAC binary interaction parameters for the mixture methanol + ethylbenzene using universal values for the UNIQUAC structural parameters. The equilibrium model was optimized using an objective function, which was developed by Sorensen [15],... [Pg.264]

Alkylation over the MWW Zeolite. The MWW (or MCM-22) zeolite developed by Mobil as catalyst for ethylbenzene and cumene production deserves particular attention. Indeed, this zeolite presents unique structural features (Figure 12.5). Its structure is constituted of three independent pore systems " large supercages (inner diameter of 7.1 A dehned by a 12-member-ring [12-MR], height 18.2 A) each connected to six others through 10-MR apertures... [Pg.242]

Poro-xylene is an industrially important petrochemical. It is the precursor chemical for polyester and polyethylene terephthalate. It usually is found in mixtures containing all three isomers of xylene (ortho-, meta-, para-) as well as ethylbenzene. The isomers are very difficult to separate from each other by conventional distillation because the boiling points are very close. Certain zeoHtes or mol sieves can be used to preferentially adsorb one isomer from a mixture. Suitable desorbents exist which have boiling points much higher or lower than the xylene and displace the adsorbed species. The boihng point difference then allows easy recovery of the xylene isomer from the desorbent by distillation. Because of the basic electronic structure of the benzene ring, adsorptive separations can be used to separate the isomers of famihes of substituted aromatics as weU as substituted naphthalenes. [Pg.174]

The catalyst consists of basic and acid sites in a microporous structure provided by zeolite and microporous materials [58-62]. Basic sites are provided by framework oxygen and/or occluded CsO. Acid sites are provided by the Cs cation and, possibly, additives such as boric and phosphoric acids. The addition of Cu and Ag increased the activity [63, 64]. Incorporation of li, Ce, Cr and Ag also has been shown to increase the styrene to ethylbenzene product ratio [65]. The reactivity of catalysts is sensitive to the presence of occluded CsO, which is in turn influenced by the preparative technique as shown by Lacroix and co-authors [64] and pointed out by Lercher [61]. [Pg.516]

Since aprotio sites in the zeolites under study were generated via ion exchange of protons inside crystal volume, the aprotio sites formed are also situated inside crystals. In connection with this, a position selectivity of primary alkylation must be influenced by structural restrictions which are put on the ti nsition state by ZSM-5 type zeolite. Hence, as follows from refs.[6,7], para-isomer must be a primary product of alkylation. Taking into account these ideas,the schemes of the main routes of investigated reactions are accepted (Jigs. 1,2). As seen from the schemes, the pathways of both reactions are practically the same. The only difference is that in the case of ethylbenzene alkylation proceeds... [Pg.314]

Ethyl mono-nitropbenols. Beil (Ref 1) lists only one compd of unde determined structure, yel oil, bp 212-15°, with a Bo soft which expl on heating. Prepd by nitration of ethylbenzene followed by treatment with nitrous acid Refs l)Beil. 6, 475 2)W.Suida S.PIohn, Monarsh 1, 181 (1880)... [Pg.190]


See other pages where Ethylbenzene structure is mentioned: [Pg.266]    [Pg.79]    [Pg.434]    [Pg.741]    [Pg.744]    [Pg.168]    [Pg.781]    [Pg.824]    [Pg.381]    [Pg.425]    [Pg.425]    [Pg.427]    [Pg.156]    [Pg.368]    [Pg.145]    [Pg.403]    [Pg.403]    [Pg.404]    [Pg.405]    [Pg.423]    [Pg.142]    [Pg.302]    [Pg.714]    [Pg.351]    [Pg.65]    [Pg.85]    [Pg.426]    [Pg.70]    [Pg.426]    [Pg.37]   
See also in sourсe #XX -- [ Pg.610 ]




SEARCH



Ethylbenzene

© 2024 chempedia.info