Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl density

Now calculate the molecular weight of the substance precisely as described on p. 442. The weight of the solvent employed may be calculated from the following densities methanol, 0 810 rectified spirit, 0-807 acetone, 0 797 ethyl acetate, 0 905 chloroform, 1 504 carbon tetrachloride, 1 582 benzene, 0 880 toluene, 0-871 cyclohexane, 0-724 i, 2-dichloroethane, 1 252. [Pg.445]

When dealing with esters of water-soluble, non steam-volatile, poly-hydric alcohols e.g., ethylene glycol or glycerol), the distillate consists of water only (density 1 00). The water soluble, non-volatile alcohol may be isolated by evaporation of the alkahne solution to a thick syrup on a water bath and extraction of the polyhydric alcohol from the salt with cold ethyl alcohol. [Pg.1064]

Thioethers usually yield sulphonium salts when warmed with ethyl iodide and allowed to cool. The physical properties (b.p., density and refractive index) are useful for identification purposes. [Pg.1078]

Alcoholometer. This hydrometer is used in determining the density of aqueous ethyl alcohol solutions the reading in degrees is numerically the same as the percentage of alcohol by volume. The scale known as Tralle gives the percentage by volume. Wine and Must hydrometer relations are given below. [Pg.140]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

The ethyl acetate is distilled at 70—100°C, leaving spherical particles. This graining operation requires ca 1 to 1.5 h. Grain density and size are determined by the concentration of salt in solution, the temperature and time of the dehydration, agitation speed, and the rate of distillation of the ethyl acetate. [Pg.46]

Aminophenol. This compound forms white plates when crystallized from water. The base is difficult to maintain in the free state and deteriorates rapidly under the influence of air to pink-purple oxidation products. The crystals exist in two forms. The a-form (from alcohol, water, or ethyl acetate) is the more stable and has an orthorhombic pyramidal stmcture containing four molecules per unit cell. It has a density of 1.290 g/cm (1.305 also quoted). The less stable P-form (from acetone) exists as acicular crystals that turn into the a-form on standing they are orthorhombic bipyramidal or pyramidal and have a hexamolecular unit (15,16,24) (see Tables 3—5). [Pg.309]

The formulation of calcium chelate materials is based upon the formation of a low-solubiUty chelate between calcium hydroxide and a sahcylate. Dycal utilizes the reaction product of a polyhydric compound and sahcyhc acid. Other sahcyhc acid esters can be similarly used. Vehicles used to carry the calcium hydroxide, extenders, and fillers may include mineral oil, A/-ethyl- -toluenesulfonamide [80-39-7] and polymeric fluids. The filler additions may include titanium dioxide [13463-67-7] zinc oxide, sihca [7631-86-9], calcium sulfate, and barium sulfate [7727-43-7]. Zinc oxide and barium sulfate are useflil as x-ray opacifying agents to ensure a density greater than that of normal tooth stmcture. Resins, rosin, limed rosins, and modified rosins may serve as modifiers of the physical characteristics in both the unset and set states. [Pg.475]

A summary of physical properties of ethyl alcohol is presented ia Table 1. Detailed information on the vapor pressure, density, and viscosity of ethanol can be obtained from References 6—14. A listing of selected biaary and ternary azeotropes of ethanol is compiled ia Reference 15. [Pg.401]

In order to improve the physical properties of HDPE and LDPE, copolymers of ethylene and small amounts of other monomers such as higher olefins, ethyl acrylate, maleic anhydride, vinyl acetate, or acryUc acid are added to the polyethylene. Eor example, linear low density polyethylene (LLDPE), although linear, has a significant number of branches introduced by using comonomers such as 1-butene or 1-octene. The linearity provides strength, whereas branching provides toughness. [Pg.432]

Pyra20lo[3,4-i]pyridine electron density, 5, 306 (69CJC1129) Pyrazolo[3,4-i]pyridine, 4-chloro-5-ethoxycarbonyl-1-ethyl-... [Pg.49]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

Fig. S-6 Relation between the density of cathodic blisters and potential shot-peened steel sheet without primer ( ) and with about 40 /tm primer coat (Zn ethyl silicate + polyvinyl butyral) ( ) top coat 500 /tm EP-tar ... Fig. S-6 Relation between the density of cathodic blisters and potential shot-peened steel sheet without primer ( ) and with about 40 /tm primer coat (Zn ethyl silicate + polyvinyl butyral) ( ) top coat 500 /tm EP-tar ...
The EPR spectrum of the ethyl radical presented in Fig. 12.2b is readily interpreted, and the results are relevant to the distribution of unpaired electron density in the molecule. The 12-line spectrum is a triplet of quartets resulting from unequal coupling of the electron spin to the a and P protons. The two coupling constants are = 22.38 G and Op — 26.87 G and imply extensive delocalization of spin density through the a bonds Note that EPR spectra, unlike NMR and IR spectra, are displayed as the derivative of absorption rather than as absorption. [Pg.668]

Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73]. Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73].
Bond density surfaces are also superior to conventional models when it comes te describing chemical reactions. Chemical reactions can involve many changes in chemica bonding, and conventional formulas are not sufficiently flexible to describe what happen (conventional plastic models are even worse). For example, heating ethyl fonnate t( high temperatures causes this molecule to fragment into two new molecules, foraii( acid and ethene. A conventional formula can show which bonds are affected by ths reaction, but it cannot tell us if these changes occur all at once, sequentially, or in soms other fashion. [Pg.26]

Mercury, ethyl alcohol, and lead are poured into a cylinder. Three distinct layers are formed. The densities of the three substances are... [Pg.23]


See other pages where Ethyl density is mentioned: [Pg.123]    [Pg.279]    [Pg.113]    [Pg.7]    [Pg.167]    [Pg.191]    [Pg.161]    [Pg.202]    [Pg.49]    [Pg.525]    [Pg.366]    [Pg.432]    [Pg.26]    [Pg.26]    [Pg.27]    [Pg.228]    [Pg.652]    [Pg.656]    [Pg.509]    [Pg.54]    [Pg.161]    [Pg.120]    [Pg.329]    [Pg.655]    [Pg.27]    [Pg.268]    [Pg.381]    [Pg.93]    [Pg.45]    [Pg.682]    [Pg.16]    [Pg.16]    [Pg.69]   
See also in sourсe #XX -- [ Pg.740 ]




SEARCH



Ethyl alcohol density

© 2024 chempedia.info