Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethane, ethylene separation using

The hydrocarbons are separated in another column and analyzed by a flame ionization detector, FID. As an example, Figure 3.13 shows the separation obtained for a propane analyzed according to the ISO 7941 standard. Note that certain separations are incomplete as in the case of ethane-ethylene. A better separation could be obtained using an alumina capillary column, for instance. [Pg.72]

The high T] values above conflict with the common behef that distillation is always inherendy inefficient. This behef arises mainly because past distillation practices utilized such high driving forces for pressure drop, tedux ratio, and temperature differentials in teboilets and condensers. A teal example utilizing an ethane—ethylene sphtter follows, in which the relative number for the theoretical work of separation is 1.0, and that for the net work potential used before considering driving forces is 1.4. [Pg.84]

The process is fed with three streams ethane, ethylene, and chlorine. The ethane and ethylene streams have the same molar flow rate, and the ratio of chlorine to ethane plus ethylene is 1.5. The ethane/ethylene stream also contains 1.5 percent acetylene and carbon dioxide. (For this problem, just use 1.5 percent carbon dioxide.) The feed streams are mixed with an ethylene recycle stream and go to the first reactor (chlorination reactor) where the ethane reacts with chlorine with a 95 percent conversion per pass. The product stream is cooled and ethyl chloride is condensed and separated. Assume that all the ethane and ethyl chloride go out in the condensate stream. The gases go to another reactor (hydrochlorination reactor) where the reaction with ethylene takes place with a 50 percent conversion per pass. The product stream is cooled to condense the ethyl chloride, and the gases (predominately ethylene and chlorine) are recycled. A purge or bleed stream takes off a fraction of the recycle stream (use 1 percent). Complete the mass balance for this process. [Pg.69]

A mixture of 62.5 mol% ethylene and 37.5 mol% ethane is separated by distillation to obtain a vapor distillate of 99 mol% ethylene with 98% recovery of ethylene. When the pressure in the reflux drum is 200 psia, determine the distillate temperature and select a coolant for the condenser. What pressure is required to permit the use of cooling water in the condenser ... [Pg.412]

The world s 140 million metric tons of annual ethylene capacity almost exclusively employs steam cracking of hydrocarbon feedstocks [5]. The majority of the feedstocks come from petroleum refining, such as by cracking of naphtha, but some producers use liquefied natural gas as a feedstock. In Brazil, where sugar cane is plentiful, Braskem has built a 200,000 metric ton per year ethylene plant based upon the dehydration of sugar-derived ethanol [6]. In the United States, natural gas liquids, a mixture of ethane, propane, butane, and other hydrocarbons, are available from shale deposits. The ethane is separated and cracked to make ethylene. Depending on the cost of oil and natural gas, this can be an economic advantage. In 2012, about 70% of United States ethylene production was from ethane [7]. [Pg.53]

Membrane Reactor. Another area of current activity uses membranes in ethane dehydrogenation to shift the ethane to ethylene equiUbrium. The use of membranes is not new, and has been used in many separation processes. However, these membranes, which are mostly biomembranes, are not suitable for dehydrogenation reactions that require high temperatures. Technology has improved to produce ceramic and other inorganic (90) membranes that can be used at high temperatures (600°C and above). In addition, the suitable catalysts can be coated without blocking the pores of the membrane. Therefore, catalyst-coated membranes can be used for reaction and separation. [Pg.443]

The Cj plus bottoms from the demethanizer then go to the deethanizer. A propylene-propane bottoms product containing 90-92% propylene is obtained which may either be sold, used directly as propylene- 90, or further purified. The ethylene-ethane overhead from the deethanizer is separated in the splitter tower yielding a 99.8% overhead ethylene product at -25°F. The ethane bottoms at -l-18°F may either be sent to fuel gas or used as feed to an ethane cracking furnace. Overall ethylene recovery in these facilities is about 98%. The product is of very high purity with less than 50 parts per million of non-hydrocarbon contaminants and a methane plus ethane level below 250 ppm. [Pg.104]

Higher molecular weight hydrocarbons present in natural gases are important fuels as well as chemical feedstocks and are normally recovered as natural gas liquids. For example, ethane may be separated for use as a feedstock for steam cracking for the production of ethylene. Propane and butane are recovered from natural gas and sold as liquefied petroleum gas (LPG). Before natural gas is used it must be processed or treated to remove the impurities and to recover the heavier hydrocarbons (heavier than methane). The 1998 U.S. gas consumption was approximately 22.5 trillion ft. ... [Pg.2]

Propane cracking is similar to ethane except for the furnace temperature, which is relatively lower (longer chain hydrocarbons crack easier). However, more by-products are formed than with ethane, and the separation section is more complex. Propane gives lower ethylene yield, higher propylene and butadiene yields, and significantly more aromatic pyrolysis gasoline. Residual gas (mainly H2 and methane) is about two and half times that produced when ethane is used. Increasing the severity... [Pg.97]


See other pages where Ethane, ethylene separation using is mentioned: [Pg.446]    [Pg.77]    [Pg.183]    [Pg.56]    [Pg.11]    [Pg.296]    [Pg.290]    [Pg.1057]    [Pg.170]    [Pg.430]    [Pg.214]    [Pg.178]    [Pg.60]    [Pg.89]    [Pg.71]    [Pg.4976]    [Pg.335]    [Pg.349]    [Pg.60]    [Pg.204]    [Pg.58]    [Pg.287]    [Pg.353]    [Pg.326]    [Pg.524]    [Pg.438]    [Pg.146]    [Pg.357]    [Pg.92]    [Pg.319]    [Pg.499]    [Pg.86]    [Pg.456]    [Pg.478]    [Pg.441]    [Pg.150]    [Pg.99]    [Pg.387]   


SEARCH



Ethane, ethylene separation using membranes

Ethane/ethylene separation (

Ethylene ethane

Ethylene separation from ethane using

Ethylene separation from ethane using membranes

© 2024 chempedia.info