Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethane Carbon monoxide

In this regard, it is well to remember the role which the wall plays on the nature of the products obtained from gas phase oxidation. There is certainly common agreement that walls and wall reactions are important in this respect. For example, Hay et al. (11) have shown the importance of the walls in determining the nature and composition of the oxygenated products from 2-butane + 02 at 270°C. Cohens study on the photo-oxidation of acetone also illustrates this point (10). He found that if acetone is photolyzed by itself in a quartz vessel, the normal products—methane, ethane, carbon monoxide, and methyl ethyl ketone— are produced. [Pg.155]

Experimental apparatus Electromagnetic emission source, electromagnetic energy meter (tesla), high frequency mechanical wave recorder, coal and rock strain recorder, methane, ethane, carbon monoxide sensors, data logger. [Pg.485]

Some specific recent applications of the chromatography-mass spectrometry technique to various types of polymers include the following PE [130, 131], poly(l-octene), poly(l-decene), poly(l-dodecene) and 1-octene-l-decene-l-dodecene terpolymer [132], chlorinated polyethylene [133], polyolefins [134,135], acrylic acid, methacrylic acid copolymers [136, 137], polyacrylate [138], styrene-butadiene and other rubbers [139-141], nitrile rubber [142], natural rubbers [143,144], chlorinated natural rubber [145,146], polychloroprene [147], PVC [148-150], silicones [151,152], polycarbonates (PC) [153], styrene-isoprene copolymers [154], substituted PS [155], polypropylene carbonate [156], ethylene-vinyl acetate copolymer [157], Nylon 6,6 [158], polyisopropenyl cyclohexane-a-methylstyrene copolymers [195], cresol-novolac epoxy resins [160], polymeric flame retardants [161], poly(4-N-alkylstyrenes) [162], pol)winyl pyrrolidone [31,163], vinyl pyrrolidone-methacryloxysilicone copolymers [164], polybutylcyanoacrylate [165], polysulfide copolymers [1669], poly(diethyl-2-methacryloxy) ethyl phosphate [167, 168], ethane-carbon monoxide copolymers [169], polyetherimide [170], and bisphenol-A [171]. [Pg.125]

The mass of the outer cloud is assumed to be about 5 times the mass of the Earth, the number of objects larger than about 1 km is several 10. The majority of the objects consist of ices such as water, methane, ethane, carbon monoxide and hydrogen cyanide. There are also indications, that rocky objects may exist there. [Pg.110]

Carbon dioxide Carbon monoxide Chlorine Ethane Ethylene Hydrogen ... [Pg.363]

Ethane. Ethane VPO occurs at lower temperatures than methane oxidation but requires higher temperatures than the higher hydrocarbons (121). This is a transition case with mixed characteristics. Low temperature VPO, cool flames, oscillations, and a NTC region do occur. At low temperatures and pressures, the main products are formaldehyde, acetaldehyde (HCHOiCH CHO ca 5) (121—123), and carbon monoxide. These products arise mainly through ethylperoxy and ethoxy radicals (see eqs. 2 and 12—16 and Fig. 1). [Pg.341]

An interesting development in the use of metal carbonyl catalysts is the production of hydrocarbons from carbon monoxide and hydrogen. The reaction of carbon monoxide and hydrogen in a molten solution of sodium chloride and aluminum chloride with It4(CO) 2 a catalyst yields a mixture of hydrocarbons. Ethane is the primary product (184). [Pg.71]

Miscellaneous Reactions. Ethylene oxide is considered an environmental pollutant. A study has determined the half-life of ethylene oxide ia the atmosphere (82,83). Autodecomposition of ethylene oxide vapor occurs at - 500° C at 101.3 kPa (1 atm) to give methane, carbon monoxide, hydrogen, and ethane (84—86). [Pg.454]

For example, carbon dioxide from air or ethene nitrogen oxides from nitrogen methanol from diethyl ether. In general, carbon dioxide, carbon monoxide, ammonia, hydrogen sulfide, mercaptans, ethane, ethene, acetylene (ethyne), propane and propylene are readily removed at 25°. In mixtures of gases, the more polar ones are preferentially adsorbed). [Pg.29]

Carbon monoxide, methane, ethylene, ethane, ethylene dichloride, aromatic solvent... [Pg.500]

Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide. Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide.
Ethane, like methane, is a colorless gas that is insoluble in water. It does not react with acids and bases, and is not very reactive toward many reagents. It can also be partially oxidized to a carbon monoxide and hydrogen mixture or chlorinated under conditions similar to those used... [Pg.30]

Heal content, 110. 116 change (luring a reaction, 110 of a substance, 109 Heat of combustion of diamond, 122 graphite, 122 hydrazine, 47 hydrogen, 40 methane, 123 Heat of formation, 113 Heat of reaction, 135 between elements, table, 112 oxidation of HC1, 160 oxidation of sulfur dioxide, 161 predicting, 112 Heat of reaction to form ammonia, 112 Br atoms, 290 carbon dioxide, 112 carbon monoxide, 112 Cl atoms, 290 CO + Hi, 110 ethane, 112 F atoms, 290 H atoms, 274 hydrogen chloride, 160 hydrogen iodide, 112 iron(Ill) oxide, 162 Li atoms, 290 Li + Br, 290 Li + F, 290 Na + Cl, 290 NHs products, 114 Na atoms, 290 NO, 112 NOj, 112... [Pg.460]

The space velocity was varied from 2539 to 9130 scf/hr ft3 catalyst. Carbon monoxide and ethane were at equilibrium conversion at all space velocities however, some carbon dioxide breakthrough was noticed at the higher space velocities. A bed of activated carbon and zinc oxide at 149 °C reduced the sulfur content of the feed gas from about 2 ppm to less than 0.1 ppm in order to avoid catalyst deactivation by sulfur poisoning. Subsequent tests have indicated that the catalyst is equally effective for feed gases containing up to 1 mole % benzene and 0.5 ppm sulfur (5). These are the maximum concentrations of impurities that can be present in methanation section feed gases. [Pg.141]

Thermal Decomposition. The therm decompn was studied betw 380 and 430° and found to be homogeneous and apparently 1st order. The products were complex and included nitric oxide, methane, carbon monoxide, and w plus small amts of ethane, ethylene, and nitrous oxide (Ref 23)... [Pg.89]

The simplest primary alkyl cations, CHJ and C2H, are formed from methane and ethane, respectively, by SbPs—PHSO3 (Olah and Schlosberg, 1968 Olah et al., 1969) and by SbPs (Lukas and Kramer, 1971). In these cases, intermolecular electrophilic substitution of these ions at the precursor alkanes leads to oligocondensation products, e.g. tertiary butyl and hexyl ions. In the presence of carbon monoxide it has been found possible to intercept the intermediate CHJ and C2H quantitatively as oxocarbonium ions (Hogeveen et al., 1969 Hogeveen and Roobeek, 1972). The competition between the reactions of the ethyl cation with ethane and carbon monoxide, respectively, is illustrated by the following equations ... [Pg.44]

In a typical run, bis(l,2-diphenylphosphino)ethane (DPPE) (0.022 g, 0.05 mmol) and 1,3 diene (32.5 mmol) are added to a portion of the co-condensate, containing 5.2 mg of rhodium (0.05 mg. atom) in 10 ml of mesitylene. The solution is introduced by suction into an evacuated, 80 ml stainless steel autoclave. Carbon monoxide is introduced to the desired pressure and the autoclave is rocked and heated at 80 °C. Hydrogen is rapidly charged to give 1 1 gas composition. When the pressure reaches the theoretical value corresponding to the desired conversion, the autoclave is cooled, depressurised, and the reaction mixture analyzed by GLC. The crude product is distilled. The aldehydes are obtained as pure samples by preparative GLC and characterized by H NMR spectroscopy and GC-MS analysis. [Pg.449]

The composition of a gas derived by the gasification of coal is, volume percentage carbon dioxide 4, carbon monoxide 16, hydrogen 50, methane 15, ethane 3, benzene 2, balance nitrogen. If the gas is burnt in a furnace with 20 per cent excess air, calculate ... [Pg.57]

Selective transformations Selective styrene ring opening [103] One-pot domino process for regioselective synthesis of a-carbonyl furans [104] Tandem process for synthesis of quinoxalines [105] Atmospheric oxidation of toluene [106] Cyclohexane oxidation [107] Synthesis of imines from alcohols [108] Synthesis of 2-aminodiphenylamine [109] 9H-Fluorene oxidation [110] Dehydrogenation of ethane in the presence of C02 [111] Decomposition of methane [112] Carbon monoxide oxidation [113]... [Pg.228]

Not all C-H activation chemistry is mediated by transition metal catalysts. Many of the research groups involved in transition metal catalysis for C-H activation have opted for alternative means of catalysis. The activation of methane and ethane in water by the hexaoxo-/i-peroxodisulfate(2—) ion (S2O82) was studied and proceeds by hydrogen abstraction via an oxo radical. Methane gave rise to acetic acid in the absence of external carbon monoxide, suggesting a reaction of a methyl radical with CO formed in situ. Moreover, the addition of (external) CO to the reaction mixture led to an increase in yield of the acid product (Equation (ll)).20... [Pg.105]


See other pages where Ethane Carbon monoxide is mentioned: [Pg.207]    [Pg.481]    [Pg.311]    [Pg.485]    [Pg.396]    [Pg.88]    [Pg.207]    [Pg.481]    [Pg.311]    [Pg.485]    [Pg.396]    [Pg.88]    [Pg.59]    [Pg.22]    [Pg.45]    [Pg.95]    [Pg.441]    [Pg.441]    [Pg.459]    [Pg.133]    [Pg.98]    [Pg.130]    [Pg.162]    [Pg.124]    [Pg.302]    [Pg.63]    [Pg.357]    [Pg.78]    [Pg.98]    [Pg.27]    [Pg.238]    [Pg.251]    [Pg.313]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Ethane and carbon monoxide

Ethane carbon

© 2024 chempedia.info