Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters, phosphoric acid hydrolysis

When a phosphite is used as a catalyst modifier, it is susceptible to oxidation in the same manner as a phosphine. Unlike triphenylphosphine oxide, which is relatively innocuous except for precipitation when the solubility limit is reached, phosphite oxidation products may hydrolyze to give phosphoric acid. Since phosphites are esters, phosphoric acid can catalyst additional hydrolysis. Other than limiting formation of phosphite oxidation products, the best approach is to include some acidity control technology in the separation or reaction system. [Pg.25]

Plant. In plants, mevinphos is hydrolyzed to phosphoric acid dimethyl ester, phosphoric acid, and other less toxic compounds (Hartley and Kidd, 1987). In one day, the compound is almost completely degraded in plants (Cremlyn, 1991). Casida et al. (1956) proposed two degradative pathways of mevinphos in bean plants and cabbage. In the first degradative pathway, cleavage of the vinyl phosphate bond affords methylacetoacetate and acetoacetic acid, which may be precursors to the formation of the end products dimethyl phosphoric acid, methanol, acetone, and carbon dioxide. In the other degradative pathway, direct hydrolysis of the carboxylic ester would yield vinyl phosphates as intermediates. The half-life of mevinphos in bean plants was 0.5 d (Casida et ah, 1956). In alfalfa, the half-life was 17 h (Huddelston and Gyrisco, 1961). [Pg.814]

Esters of phosphorous acid derived from aUphatic alcohols and unhindered phenols, eg, tris(nonylphenyl)phosphate (24), hydrolyze readily and special care must be taken to minimize decomposition by exposure to water or high humidity. The phosphorous acid formed by hydrolysis is corrosive to processing equipment, particularly at high temperatures. [Pg.227]

O-isopropylidene derivative (10) was then phosphorylated with phosphorous oxychloride to form the phosphate ester (11) from which the protecting groups were removed by mild acid hydrolysis. The 3-phos-phate (15) was obtained by phosphorylating the 4,6-benzylidene derivative (13) of the same glycoside with phosphorus oxychloride, followed by hydrolytic removal of the protecting groups, from the ester (14) thus obtained. [Pg.80]

There are some means for synthesis of defined primary or secondary esters. Monoester salts of phosphoric acid, for instance, are prepared by addition of alcohol or ethoxylated alcohol, alkali fluoride, and pyrophosphoryl chloride (C12P0)20 in a molar ratio of 0.9-1.5 0.05-1 1.0 at -50 to +10°C and hydrolysis of the Cl-containing intermediates with base. Thus, 32.3 g (C12P0)20 was treated at -50°C with 23.9 g lauryl alcohol in the presence of 0.7 g KF and the mixture was slowly warmed to room temperature and hydrolyzed with H20 and 40% NaOH to give 83% sodium monolauryl phosphate. The monoester salts showed comparable or better washing and foaming efficiency than a commercial product [12]. [Pg.557]

Whereas nonionic ethylene oxide adducts discolor badly on contact with sodium hydroxide, phosphate derivatives of these nonionics exhibit good color stability even under these conditions. But in the presence of strong acids poly-oxyethylated phosphate esters undergo hydrolysis to the base nonionic and phosphoric acid. However, the free surface-active acids by themselves show little tendency to hydrolyze. They have a pH value of 2 in aqueous solution. [Pg.564]

Phosphoric acid esters are strong acids similar to orthophosphoric acid. Potentiometric titration of a 0.1 N aqueous solution of an acid phosphoric acid ester clearly shows two potential jumps which lie at pH values of 6.5 and 11.5. The pH value of diluted aqueous solutions of acid esters lies in the range of 1-3. Phosphoric acid esters are stable against hydrolysis, but adducts of free phosphoric acid esters with ethylene oxide are generally less stable. [Pg.591]

B. Solvolysis of Phosphoric Acid Derivatives.—Interest continues in neighbouring-group participation in the solvolysis of phosphate esters. As a potential model compound for investigating the mechanism of ribo-nuclease action, the phenyl hydrogen phosphate ester of c/j-3,4-tetrahydro-furandiol (24) has been the subject of a detailed study. Above (and probably also below) pH 4 hydrolysis gives solely the cyclic phosphate (25)... [Pg.100]

J. P. Guthrie, Hydration and Dehydration of Phosphoric Acid Derivatives Free Energies of Formation of the Pentacoordinate Intermediates for Phosphate Ester Hydrolysis and of Monomeric Metaphosphate, J. Am. Chem. Soc. 1977, 99, 3391. [Pg.40]

The purified tetraethyl pyrophosphate is a colorless, odorless, water-soluble, hygroscopic liquid (24, 4 )- It possesses a very high acute toxicity (28), exceeding that of parathion, and is rapidly absorbed through the skin. There is no spray-residue problem, however, for tetraethyl pyrophosphate hydrolyzes even in the absence of alkali to nontoxic diethyl phosphoric acid. Hall and Jacobson (24) and Toy (47) have measured its rate of hydrolysis, which is a first-order reaction. Its half-life at 25° C. is 6.8 hours and at 38° C. is 3.3 hours. Coates (10) determined the over-all velocity constant at 25° C. k = 160 [OH-] + 1.6 X 10 3 min.-1 Toy (47) has described an elegant method for preparing this ester as well as other tetraalkyl pyrophosphates, based upon the controlled hydrolysis of 2 moles of dialkyl chlorophosphate ... [Pg.155]

Hydrolysis appears to be the most important abiotic degradative mechanism for organophosphate esters under basic pH conditions. Under neutral and acidic conditions, the reaction slows considerably and could become an insignificant removal mechanism. The hydrolysis proceeds by a stepwise mechanism in which one alcohol group is removed at a time. The first step is cleavage of a P-OR bond (where "R" is an aryl or alkyl group) to produce a diester of phosphoric acid, which, under basic conditions, becomes an anion. [Pg.302]

This property of organophosphate esters may be of environmental importance since phosphoric acid diesters are much more soluble and very little is known concerning the environmental toxicity of these compounds. The available data do not provide sufficient descriptions of the experimental methods to determine if the rates are reliable (Barnard et al. 1961 Ciba-Geigy 1984e, 1986 Howard and Deo 1979 Mayer et al. 1981 Wolfe 1980). The majority of reports provide only a minimum of information and exclude important facts such as the duration of the experiments and the concentration of buffers. Despite the lack of experimental detail, published rate constants for base-catalyzed hydrolysis appear to be reasonably consistent and suggest that the hydrolytic half-life of triphenyl phosphate will vary from... [Pg.302]

The monomeric metaphosphate ion itself commands a fair amount of attention in discussions of metaphosphates. It is postulated as an intermediate of numerous hydrolysis reactions of phosphoric esters 52 S4,S5) and also of phosphorylation reactions S6> kinetic and mechanistic studies demonstrate the plausibility of such an assumption. In addition, the transient formation of ester derivatives of meta-phosphoric acid — in which the double-bonded oxygen can also be replaced by thio and imino — has also been observed they were detected mainly on the basis of the electrophilic nature of the phosphorus. [Pg.93]

The monomeric phosphate ion 102 was first postulated in 1955 as an intermediate of the hydrolysis of monoesters of phosphoric acid in an aqueous medium 57,58). Another 24 years were to elapse before compound 102 was observed directly, and then not in solution but in the mass spectra of some pesticides. The negative ion Cl spectra of enol phosphates 94 and of the thiophosphorie ester 95 display an intense peak at m/e == 78.9590, which is unequivocally assigned to the POf ion 59). [Pg.93]

Additionally, they observed a second pathway, hydrolysis through dealkylation leading to a secondary ester of phosphoric acid which still contains the p-nitrophenyl moiety, i.e., de-ethyl Parathion (O-clhyl-O-p-nilrophenyl-monothiophosphoric acid) ... [Pg.424]

The alcoholysis of the cyclic phosphate of catechol by alditols can lead, after acid hydrolysis of intermediate, cyclic phosphates, to the selective formation of phosphoric esters of the primary hydroxyl groups in the alditols. Thus, erythritol and D-mannitol afford, after chromatographic purification of the reaction products, their 1-phosphates in yields of 31 and 38%, respectively.217 The method was used to convert riboflavine into riboflavine 5 -phosphate.218 1-Deoxy-1-fluoro-L-glycerol has been converted into the 3-(dibenzyl phosphate) in 54% yield by selective reaction with dibenzyl phosphorochloridate. 219... [Pg.50]

The ester group is then hydrolysed, and the hydrolysis normally stops at the MePO(OH)2 stage. More vigorous conditions are required to rupture the Me—P bond. Thus the normal hydrolysis product of D.F.P. and of tabun, namely, phosphoric acid, will give a positive test with ammonium molybdate, whereas the product from sarin, namely, methylphosphonic acid, will not respond to this test. Vigorous reagents such as hot nitric acid and ammonium persulphate will break the C—P link and then a positive test for phosphate is obtained with ammonium molybdate. Sarin can be prepared in a variety of ways. Three... [Pg.106]

Muhlmann K, Schrader G. 1957. [Hydrolysis of phosphoric acid ester insecticides], Z Naturforschg [B] 12 196-203. (German)... [Pg.192]

These compounds contain the fragment R as an alkyl or aryl moiety. In other words, they result from the esterification of an alcohol or a phenol with nitrous acid, nitric acid, phosphoric acid, sulfuric acid, or sulfamic acid, respectively. Many of the esters to be examined in this chapter must be activated prior to eliciting their effects, e.g., the organic nitrites and nitrates, which act as donors of nitric oxide or an analogous molecule, and phosphates, which are activated by hydrolysis or even by phosphorylation (antiviral agents). Sulfates are very seldom active or used as prodrugs, but they have significance as metabolites and as industrial xenobiotics. [Pg.553]

Fig. 9.7. a) Mechanism of activation of (phenytoin-3-yl)methyl phosphate (9.25) to release phenytoin. Phosphoric acid ester hydrolysis is mediated by alkaline phosphatase, b) (Phospho-ryloxy)methyl prodrugs of tertiary amines, whose activation occurs by the same two-step mechanism shown in a [79]. [Pg.569]

In whole blood, phosphatase activity is associated primarily with red blood cells, but it is recognized that blood has a low phosphatase activity compared to other tissues such as the kidney, brain, liver, lung, and heart ([87] [88] and refs. cit. therein). Thus, studies with blood preparations should underestimate the in vivo rate of hydrolysis of phosphoric acid esters, a point of significance in the development of phosphate prodrugs. [Pg.572]

In standard conditions, the change in free enthalpy AG° (see p. 18) that occurs in the hydrolysis of phosphoric acid anhydride bonds amounts to -30 to -35 kj mol at pH 7. The particular anhydride bond of ATP that is cleaved only has a minor influence on AG° (1-2). Even the hydrolysis of diphosphate (also known as pyrophosphate 4) still yields more than -30 kJ mol . By contrast, cleavage of the ester bond between ribose and phosphate only provides -9 kJ mol (3). [Pg.122]

Cerium(III) nitrate is used for the separation of cerium from other rare-earth elements. It also is used as a catalyst in hydrolysis of phosphoric acid esters. [Pg.203]

If H4O10 is treated with ethers, very hygroscopic esters with the composition (R0P02)i are formed, which give on careful hydrolysis a mixture of free phosphoric acid, its esters and esters of pyrophosphorie acid. The products are formed in the following molecular proportions (237, 325). [Pg.58]

Metal ions have been shown to catalyze the hydrolysis of phosphate esters, phosphoric and phosphonic acid halides, and various phosphoric acid anhydrides including acyl phosphates, pyrophosphate derivatives, and ATP. [Pg.32]

Alkaline phosphomonoesterase Hydrolysis of phosphoric acid esters Index of pasteurization... [Pg.238]


See other pages where Esters, phosphoric acid hydrolysis is mentioned: [Pg.308]    [Pg.330]    [Pg.32]    [Pg.142]    [Pg.65]    [Pg.663]    [Pg.505]    [Pg.559]    [Pg.562]    [Pg.20]    [Pg.197]    [Pg.701]    [Pg.317]    [Pg.318]    [Pg.319]    [Pg.329]    [Pg.108]    [Pg.110]    [Pg.443]    [Pg.343]    [Pg.188]    [Pg.146]   
See also in sourсe #XX -- [ Pg.1064 , Pg.1068 ]

See also in sourсe #XX -- [ Pg.1064 , Pg.1068 ]




SEARCH



Hydrolysis phosphoric acid

Phosphorate esters

Phosphorous acid esters

Phosphorous esters

© 2024 chempedia.info