Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Essential Physical Concepts for Chemistry

Science is divided into two categories physics and stamp collecting. [Pg.32]

Lord Ernest Rutherford (1871-1937) Nobel Laureate in Chemistry (1908) [Pg.32]

Lord Rutherford (who was indeed a physicist, as the quote implies) would have been astonished to see this century s transformation of biology from stamp collecting into molecular biology, genomics, biochemistry and biophysics. This transformation occurred only because, time and time again, fundamental advances in theoretical physics drove the development of useful new tools for chemistry. Chemists in turn learned how to synthesize and characterize ever more complex molecules, and eventually created a quantitative framework for understanding biology and medicine. [Pg.32]

This chapter introduces the core concepts of what is now called classical physics (mechanics, electricity, magnetism, and properties of waves). Today we think of classical physics as a special case in a more general framework which would include relativistic effects (for particles with velocities which approach the speed of light) and quantum effects, which are needed for a complete description of atomic behavior. Nonetheless, we will find that this classical perspective (with a few minor corrections) serves as an excellent starting point for understanding many atomic and molecular properties. [Pg.32]


An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Mathematical operations occur regularly both in the theory and problems of physical chemistry, contributing greatly to the complexity of the subject. Mathematics is essential for the meaningful learning of physical chemistry, but for this to happen it must be coupled with understanding of the underlying physical concepts. [Pg.83]

This book is mainly intended as a supplement for the mathematically sophisticated topics in an advanced freshman chemistry course. My intent is not to force-feed math and physics into the chemistry curriculum. It is to reintroduce just enough to make important results understandable (or, in the case of quantum mechanics, surprising). We have tried to produce a high-quality yet affordable volume, which can be used in conjunction with any general chemistry book. This lets the instructor choose whichever general chemistry book covers basic concepts and descriptive chemistry in a way which seems most appropriate for the students. The book might also be used for the introductory portions of a junior-level course for students who have not taken multivariate calculus, or who do not need the level of rigor associated with the common one-year junior level physical chemistry sequence for example, an introduction to biophysical chemistry or materials science should build on a foundation which is essentially at this level. [Pg.227]

The Lewis model is second only to the molecular structure hypothesis itself in providing a conceptual basis for much of present-day chemical thinking, particularly with regard to models of molecular geometry and reactivity. It is essential that the physical basis of this model be established if one is to place all of the vital concepts of chemistry on a firm theoretical footing. [Pg.248]

This review has covered many of the essential features of the physical chemistry of nanocrystals. Rather than provide a detailed description of the latest and most detailed results concerning this broad class of materials, we have instead outlined the fundamental concepts which serve as departure points for the most recent research. This necessarily limited us to a discussion of topics that have a long history in the community, leaving out some of the new and emerging areas, most notably nonlinear optical studies [152] and magnetic nanocrystals [227]. Also, the... [Pg.2913]

To address these challenges, chemical engineers will need state-of-the-art analytical instruments, particularly those that can provide information about microstmctures for sizes down to atomic dimensions, surface properties in the presence of bulk fluids, and dynamic processes with time constants of less than a nanosecond. It will also be essential that chemical engineers become familiar with modem theoretical concepts of surface physics and chemistry, colloid physical chemistry, and rheology, particrrlarly as it apphes to free surface flow and flow near solid bormdaries. The application of theoretical concepts to rmderstanding the factors controlling surface properties and the evaluation of complex process models will require access to supercomputers. [Pg.187]

The great majority of coloration processes demand some control over the treatment pH, which varies from strongly alkaline in the case of vat, sulphur or reactive dyes, to strongly acidic for levelling acid dyes. The concept of pH is a familiar one its theoretical derivation can be found in all standard physical chemistry textbooks and has been particularly well explained in relation to coloration processes [6,7] both in theory and in practice. We are concerned here essentially with the chemistry of the products used to control pH and their mode of action. It has been stated [7] that Unfortunately, pH control appears simple and easy to carry out. Add acid and the pH decreases add base (alkali) and the pH increases. However, pH is the most difficult control feature in any industry . [Pg.36]

This chapter presents the underlying fundamentals of the rates of elementary chemical reaction steps. In doing so, we outline the essential concepts and results from physical chemistry necessary to provide a basic understanding of how reactions occur. These concepts are then used to generate expressions for the rates of elementary reaction steps. The following chapters use these building blocks to develop intrinsic rate laws for a variety of chemical systems. Rather complicated, nonseparable rate laws for the overall reaction can result, or simple ones as in equation 6.1-1 or -2. [Pg.117]


See other pages where Essential Physical Concepts for Chemistry is mentioned: [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.126]    [Pg.135]    [Pg.375]    [Pg.95]    [Pg.443]    [Pg.164]    [Pg.566]    [Pg.297]    [Pg.397]    [Pg.778]    [Pg.1]    [Pg.822]    [Pg.18]    [Pg.4]    [Pg.1]    [Pg.461]    [Pg.1]    [Pg.181]    [Pg.304]    [Pg.428]    [Pg.95]    [Pg.37]    [Pg.679]    [Pg.420]    [Pg.174]    [Pg.17]    [Pg.297]    [Pg.409]   


SEARCH



Chemistry physical

Physical chemistry physics

Physical concepts

© 2024 chempedia.info