Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equipment Catalytic plate reactor

In this chapter, we presented and, by discussing CFD simulations, critically analyzed two reactor configurations equipped with capillary technique for the resolution of species and temperature profiles, which have gained immense interest in the community recently (1) the SFR, in which the reactants flow is directed on a catalytic plate and (2) catalytically coated monoliths. For both systems, the potentials and limitations have been discussed. [Pg.88]

A second strategy relies on parallel experimentation. In this case, the same experimental step is performed over n samples in n separated vessels at the same time. Robotic equipment such as automated liquid-handlers, multi-well reactors and auto-samplers for the analysis are used to perform the repetitive tasks in parallel. This automated equipment often works in a serial fashion as, for example, a liquid handler with a single dispensing syringe filling the wells of a microtiter plate, one after another. However, the chemical formation of the catalyst or the catalytic reaction are run at the same time, assuming that their rate is slow compared to the time needed to add all the components. The whole process appears parallel for the human user whose intervention is reduced. [Pg.1249]

Sample integrations similar to pharmaceutical approaches were already examined in 1997 [39]. Here, a chip-like microsystem was integrated into a laboratory automaton that was equipped with a miniaturized micro-titer plate. Microstructures were introduced later [40] for catalytic gas-phase reactions. The authors also demonstrated [41] the rapid screening of reaction conditions on a chip-like reactor for two immiscible liquids on a silicon wafer (Fig. 4.8). Process conditions, like residence time and temperature profile, were adjustable. A third reactant could be added to enable a two-step reaction as well as a heat transfer fluid which was used as a mean to quench the products. [Pg.96]

An example of a mapping from the equipment representation to the thermodynamic state representation is shown in Fig. 5. It represents an isothermal vertical packed-bed catalytic reactor equipped with temperature and pressure sensors, an explosion vent, and a distributor plate. Notice that the equipment and sensors are not associated with the state representation. They are contained in the base representation and reside in the process description at the equipment level. As discussed earlier, flow, work, heat, and mass interactions are all modeled independently. This allows us to evaluate independently the effect of these processes. Independent evaluation assists in the identification, evaluation, and assessment of event pathways leading to hazardous states. [Pg.204]

Pure and NaP-modified MnOx-catalysts were used in our study. Due to easy visualization by AFM, the MnOx layer was placed on a Si-wafer substrate (1 cm x 1 cm plate), by a reactive deposition technique. The sample preparation was carried out in a vacuum installation equipped with an resistance evaporator. Metallic manganese (99.8%) as a source and a Si wafer with a surface orientation (111) and resistivity of 7.5 ohm/cm as support, were used. During MnOx deposition, an oxygen partial pressure of ca 10 torr, in dynamic mode, was maintained. Before used for the catalytic purpose, MnOx samples were calcined in air at 700°C for 60min. In order to prepare the NaP-modified catalyst, the MnOx samples were impregnated in a diluted Na4P20 solution (5 wt %), dried and finally calcined at 500° C, in air during 30 min. The interaction with methane was performed in a quartz reactor in a methane atmosphere at 700° 5° C. [Pg.656]

Class 1 equipment are also called column-type equipment. Under this category, there are the various multiphase contactors. Gas-liquid contactors include bubble columns, packed bubble columns, internal-loop and external-loop air-lift reactors, sectionalized bubble columns, plate columns, and others. Solid-fluid (liquid or gas) contactors include static mixers, fixed beds, expanded beds, fluidized beds, transport reactors or contactors, and so forth. For instance, fixed-bed geometry is used in unit operations such as ion exchange, adsorptive and chromatographic separations, and drying and in catalytic reactors. Liquid-liquid contactors include spray columns, packed extraction... [Pg.799]


See other pages where Equipment Catalytic plate reactor is mentioned: [Pg.403]    [Pg.90]    [Pg.1272]    [Pg.90]    [Pg.620]    [Pg.51]    [Pg.90]    [Pg.221]   
See also in sourсe #XX -- [ Pg.14 , Pg.225 ]




SEARCH



Catalytic plate reactor

Catalytic reactor

Plate reactor

© 2024 chempedia.info