Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium kinetic interpretation

It is further interesting to observe that the behavior of a system approaching a thermodynamic equilibrium differs little from one approaching a steady state. According to the kinetic interpretation of equilibrium, as discussed in Chapter 16, a mineral is saturated in a fluid when it precipitates and dissolves at equal rates. At a steady state, similarly, the net rate at which a component is consumed by the precipitation reactions of two or more minerals balances with the net rate at which it is produced by the minerals dissolution reactions. Thermodynamic equilibrium viewed from the perspective of kinetic theory, therefore, is a special case of the steady state. [Pg.392]

The kinetic interpretation of the chemistry of oceanic waters (kinetics of inputs of primary constituents interactions between biologic and mixing cycles) leads to the development of steady state models, in which the relatively constant chemistry of seawater in the recent past (i.e., Phanerozoic cf. Rubey, 1951) represents a condition of kinetic equilibrium among the dominant processes. In a system at... [Pg.607]

To obtain information on the coupling of the various intermediates one has to analyze the relationship between the corresponding titration curves. Scheme 3.4-3 shows typical steady-state curves for the (1) stepwise twofold association of ligand L with metal complex M, (2) association of L with two metal complexes M and N at equilibrium and (3) association of L to two metal complexes M and N being not at equilibrium (kinetically separated). From these three types of coupling most of the partial maps can be easily interpreted. [Pg.97]

Although Boltzmann did not fully succeed in proving the tendency of the world to go to a final equilibrium state, there remain after all criticisms the following valuable results first, the derivation of the Maxwell-Boltzmann distribution for equilibrium states, then the kinetic interpretation of the entropy by the //-function, and finally the explanation of the existence of an integrating factor for dU+dA. In thermodynamics the existence of such a factor is always based on an unexplained hypothesis. [Pg.141]

Natural waters obtain their equilibrium composition through a variety of chemical reactions and physicochemical processes. In this chapter we consider principles and applications of two alternative models for natural water systems thermodynamic models and kinetic models. Thermodynamic, or equilibrium, models for natural waters have been developed more extensively than kinetic models. They are simpler in that they require less information, but they are nevertheless powerful when applied within their proper limits. Equilibrium models for aquatic systems receive the greater attention in this book. However, kinetic interpretations are needed in description of natural waters when the assumptions of equilibrium models no longer apply. Because rates of different chemical reactions in water and sediments can differ enormously, kinetic and equilibrium are often needed in the same system. [Pg.16]

Kinetic interpretation of the recombination portion of the [OH] profile proceeds by means of the partial equilibrium approximation, by which the course of change of the entire system composition with recombination is computed, using the measured shock wave speed and initial gas composition and known thermochemical properties of the expected species. To place the progress of recombination in perspective, the change in N from its original value of unity to the value at full equilibrium, A, is reckoned in terms of the normalized progress variable defined as... [Pg.138]

In this chapter, we will discuss how the chemical and physical properties of substances at interfaces differ from those in the bulk. For quantitative description, quantities like surface tension and surface energy have to be introduced. With the help of these quantities, phenomena known from everyday life like the lotus effect can be explained. However, perhaps you are more interested to learn how detergents clean Then have a look at Sect. 16.3 which deals with the adsorption on liquid surfaces. The next section covers the adsorption on solid surfaces and the variation of the extent of coverage with pressure or concentration of the substance to be adsorbed. Langmuir s isotherm, the simplest description of such an adsorptiOTi process, is deduced by kinetic interpretation of the adsorption equilibrium. Alternatively, it can be derived by introducing the chemical potential of free and occupied sites and cmisideiing the equilibrium condition. In the last part of the chapter, some important applications such as surface measurement and adsorption chromatography are discussed. [Pg.381]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

In the original announcement of the workshop the participants were told that everything was to be taken from methanol synthesis except the kinetics. Some may have interpreted this to mean that the known thermodynamic equilibrium information of the methanol synthesis is not valid when taken together with the kinetics. This was not intended, but... [Pg.138]

Equation 11-15 is known as the Michaelis-Menten equation. It represents the kinetics of many simple enzyme-catalyzed reactions, which involve a single substrate. The interpretation of as an equilibrium constant is not universally valid, since the assumption that the reversible reaction as a fast equilibrium process often does not apply. [Pg.839]

This device of A, the displacement from equilibrium, is used in the study of very fast reversible reactions by relaxation kinetics. We will see, in Chapter 4, that if A is very small, all reactions follow first-order kinetics, thus simplifying the interpretation of the kinetics. This approach might be extended to slow reversible reactions. [Pg.62]

There have been few satisfactory demonstrations that decompositions of hydrides, carbides and nitrides proceed by interface reactions, i.e. either nucleation and growth or contracting volume mechanisms. Kinetic studies have not usually been supplemented by microscopic observations and this approach is not easily applied to carbides, where the product is not volatile. The existence of a sigmoid a—time relation is not, by itself, a proof of the occurrence of a nucleation and growth process since an initial slow, or very slow, process may represent the generation of an active surface, e.g. poison removal, or the production of an equilibrium concentration of adsorbed intermediate. The reactions included below are, therefore, tentative classifications based on kinetic indications of interface-type processes, though in most instances this mechanistic interpretation would benefit from more direct experimental support. [Pg.155]

Kresge et a/.498 have drawn attention to the fact that detritiation of [3H]-2,4,6-trihydroxy- and [3H]-2,4,6-trimethoxy-benzenes by concentrated aqueous perchloric acid gives correlations of log rate coefficient with — H0 with slopes of 0.80 and 1.14 respectively. Protonation to give the carbon conjugate acids is, however, governed by h0lA0 and h0l 9S, respectively, which suggests that the difference in kinetic acidity dependence is a property of the substrate and should not be interpreted as a major difference in mechanism. The kinetic difference can be eliminated by an appropriate comparison of kinetic and equilibrium acidity dependencies. In equation (230)... [Pg.221]

The simplest overall interpretation of these data is in terms of a rate-determining dissociation. Entropies of activation are positive and the solvent-dependence for a better leaving group (Cl) is less marked than for a worse one (Br) in the case of reaction (38) . For the dimeric carbonyls, [M(CO)4X]2, bridge-breaking, essentially the same dissociation, could result in a rapid pre-equilibrium. If this were followed by a second dissociative step, then the kinetics could be first-order (as for Mn), while a rate-determining entry of L could produce second-order kinetics (as for Re). [Pg.40]

We will limit ourselves to reviewing recent SAXS and SANS studies of putatively fully unfolded states formed at equilibrium. We direct readers interested in partially folded states (kinetic and equilibrium molten globules and their brethren) to a number of excellent recent articles and reviews (Kataoka and Goto, 1996 Kataoka et al., 1997 Uversky etal., 1998 Pollack et al., 1999 Doniach, 2001). Similarly, we will not discuss in detail the technical aspects of scattering studies or the precise interpretation of scattering profiles, but instead direct the reader to the appropriate resources (Glatter and Kratky, 1982 Doniach et al., 1995 Kataoka and Goto, 1996 Doniach, 2001). [Pg.265]

E. L. Shock (1990) provides a different interpretation of these results he criticizes that the redox state of the reaction mixture was not checked in the Miller/Bada experiments. Shock also states that simple thermodynamic calculations show that the Miller/Bada theory does not stand up. To use terms like instability and decomposition is not correct when chemical compounds (here amino acids) are present in aqueous solution under extreme conditions and are aiming at a metastable equilibrium. Shock considers that oxidized and metastable carbon and nitrogen compounds are of greater importance in hydrothermal systems than are reduced compounds. In the interior of the Earth, CO2 and N2 are in stable redox equilibrium with substances such as amino acids and carboxylic acids, while reduced compounds such as CH4 and NH3 are not. The explanation lies in the oxidation state of the lithosphere. Shock considers the two mineral systems FMQ and PPM discussed above as particularly important for the system seawater/basalt rock. The FMQ system acts as a buffer in the oceanic crust. At depths of around 1.3 km, the PPM system probably becomes active, i.e., N2 and CO2 are the dominant species in stable equilibrium conditions at temperatures above 548 K. When the temperature of hydrothermal solutions falls (below about 548 K), they probably pass through a stability field in which CH4 and NII3 predominate. If kinetic factors block the achievement of equilibrium, metastable compounds such as alkanes, carboxylic acids, alkyl benzenes and amino acids are formed between 423 and 293 K. [Pg.191]

The polymerization kinetics have been intensively discussed for the living radical polymerization of St with the nitroxides,but some confusion on the interpretation and understanding of the reaction mechanism and the rate analysis were present [223,225-229]. Recently, Fukuda et al. [230-232] provided a clear answer to the questions of kinetic analysis during the polymerization of St with the poly(St)-TEMPO adduct (Mn=2.5X 103,MW/Mn=1.13) at 125 °C. They determined the TEMPO concentration during the polymerization and estimated the equilibrium constant of the dissociation of the dormant chain end to the radicals. The adduct P-N is in equilibrium to the propagating radical P and the nitroxyl radical N (Eqs. 60 and 61), and their concentrations are represented by Eqs. (62) and (63) in the derivative form. With the steady-state equations with regard to P and N , Eqs. (64) and (65) are introduced, respectively ... [Pg.116]

The dissolution rate, according to the theory, does not depend on the mineral s saturation state. The precipitation rate, on the other hand, varies strongly with saturation, exceeding the dissolution rate only when the mineral is supersaturated. At the point of equilibrium, the dissolution rate matches the rate of precipitation so that the net rate of reaction is zero. There is, therefore, a strong conceptual link between the kinetic and thermodynamic interpretations equilibrium is the state in which the forward and reverse rates of a reaction balance. [Pg.233]


See other pages where Equilibrium kinetic interpretation is mentioned: [Pg.520]    [Pg.251]    [Pg.5]    [Pg.351]    [Pg.36]    [Pg.126]    [Pg.245]    [Pg.1933]    [Pg.42]    [Pg.8]    [Pg.151]    [Pg.163]    [Pg.56]    [Pg.488]    [Pg.173]    [Pg.301]    [Pg.6]    [Pg.60]    [Pg.126]    [Pg.19]    [Pg.175]    [Pg.71]    [Pg.125]    [Pg.341]    [Pg.285]    [Pg.375]    [Pg.283]    [Pg.956]    [Pg.42]    [Pg.438]    [Pg.447]   
See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Equilibrium constant kinetic interpretation

Equilibrium kinetics

Phase equilibria kinetic interpretation

© 2024 chempedia.info