Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium for chemical reaction

The concept of chemical potential is very general, applicable to almost any transformation of matter as long as there is a well-defined temperature. We have already seen how the condition for thermodynamic equilibrium for chemical reactions leads to the law of mass action. We shall now see how diffusion, electrochemical reactions and relaxation of polar molecules in the presence of an electric field, can all be viewed as chemical transformations with associated chemical potential and affinity. [Pg.255]

In this chapter we formulate the thermodynamic and stochastic theory of the simple transport phenomena diffusion, thermal conduction and viscous ffow (1) to present results parallel to those listed in points 1-7, Sect. 8.1, for chemical kinetics. We still assume local equilibrium with respect to translational and internal degrees of freedom. We do not assume conditions close to chemical or hydrodynamic equilibrium. For chemical reactions and diffusion the macroscopic equations for a given reaction mechanism provide sufficient detail, the fluxes in the forward and reverse direction, to write a birth-death master equation with a stationary solution given in terms of For thermal conduction and viscous flow we derive the excess work and then find Fokker-Planck equations with stationary solutions given in terms of that excess work. [Pg.75]

In the above section we have derived the thermodynamic condition for reaction equilibrium for chemical reactions or transformations... [Pg.173]

The most important themiodynamic property of a substance is the standard Gibbs energy of fomiation as a fimetion of temperature as this infomiation allows equilibrium constants for chemical reactions to be calculated. The standard Gibbs energy of fomiation A G° at 298.15 K can be derived from the enthalpy of fomiation AfT° at 298.15 K and the standard entropy AS° at 298.15 K from... [Pg.1904]

Thus far we have discussed the direct mechanism of dissipation, when the reaction coordinate is coupled directly to the continuous spectrum of the bath degrees of freedom. For chemical reactions this situation is rather rare, since low-frequency acoustic phonon modes have much larger wavelengths than the size of the reaction complex, and so they cannot cause a considerable relative displacement of the reactants. The direct mechanism may play an essential role in long-distance electron transfer in dielectric media, when the reorganization energy is created by displacement of equilibrium positions of low-frequency polarization phonons. Another cause of friction may be anharmonicity of solids which leads to multiphonon processes. In particular, the Raman processes may provide small energy losses. [Pg.20]

Chemical equilibrium for a reaction is associated with the change in Gibbs free energy (AG ) ealculated as follows ... [Pg.385]

For chemical reactions, just as for phase changes, at equilibrium, microscopic processes continue but in a balance which gives no macroscopic changes. [Pg.147]

These observations and many others like them lead to the generalization known as the Law of Chemical Equilibrium. For a reaction... [Pg.153]

Measurement of Equilibrium Constants Electrochemical cells can be used to measure equilibrium constants for chemical reactions. For example, consider the cell... [Pg.487]

The major species in an aqueous solution determine which categories of equilibria are important for that solution. Each major species present in the solution must be examined in light of these general categories. Are any of the major species weak acids or weak bases Are there ions present that combine to form an insoluble salt Do any of the major species participate in more than one equilibrium Any chemical reaction can approach equilibrium from either direction. Consequently, there are six different t q)es of aqueous equilibria in which major species are reactants ... [Pg.1188]

In some cases the extent of reaction is limited by the position of chemical equilibrium, and this extent ( e) will be less than max. However, in many cases e is approximately equal to max- In these cases the equilibrium for the reaction highly favors formation of the products, and only an extremely small quantity of the limiting reagent remains in the system at equilibrium. We will classify these reactions as irreversible. When the extent of reaction at... [Pg.3]

Nevertheless, chemical methods have not been used for determining ionization equilibrium constants. The analytical reaction would have to be almost instantaneous and the formation of the ions relatively slow. Also the analytical reagent must not react directly with the unionized molecule. In contrast to their disuse in studies of ionic equilibrium, fast chemical reactions of the ion have been used extensively in measuring the rate of ionization, especially in circumstances where unavoidable irreversible reactions make it impossible to study the equilibrium. The only requirement for the use of chemical methods in ionization kinetics is that the overall rate be independent of the concentration of the added reagent, i.e., that simple ionization be the slow and rate-determining step. [Pg.86]

In this contribution, we describe and illustrate the latest generalizations and developments[1]-[3] of a theory of recent formulation[4]-[6] for the study of chemical reactions in solution. This theory combines the powerful interpretive framework of Valence Bond (VB) theory [7] — so well known to chemists — with a dielectric continuum description of the solvent. The latter includes the quantization of the solvent electronic polarization[5, 6] and also accounts for nonequilibrium solvation effects. Compared to earlier, related efforts[4]-[6], [8]-[10], the theory [l]-[3] includes the boundary conditions on the solute cavity in a fashion related to that of Tomasi[ll] for equilibrium problems, and can be applied to reaction systems which require more than two VB states for their description, namely bimolecular Sjy2 reactions ],[8](b),[12],[13] X + RY XR + Y, acid ionizations[8](a),[14] HA +B —> A + HB+, and Menschutkin reactions[7](b), among other reactions. Compared to the various reaction field theories in use[ll],[15]-[21] (some of which are discussed in the present volume), the theory is distinguished by its quantization of the solvent electronic polarization (which in general leads to deviations from a Self-consistent limiting behavior), the inclusion of nonequilibrium solvation — so important for chemical reactions, and the VB perspective. Further historical perspective and discussion of connections to other work may be found in Ref.[l],... [Pg.259]

The combination of a chemical equilibrium with the phase equilibrium for C02 Reactions 1,2 and 9 were combined to... [Pg.144]

The procedure of Beutier and Renon as well as the later on described method of Edwards, Maurer, Newman and Prausnitz ( 3) is an extension of an earlier work by Edwards, Newman and Prausnitz ( ). Beutier and Renon restrict their procedure to ternary systems NH3-CO2-H2O, NH3-H2S-H2O and NH3-S02 H20 but it may be expected that it is also useful for the complete multisolute system built up with these substances. The concentration range should be limited to mole fractions of water xw 0.7 a temperature range from 0 to 100 °C is recommended. Equilibrium constants for chemical reactions 1 to 9 are taken from literature (cf. Appendix II). Henry s constants are assumed to be independent of pressure numerical values were determined from solubility data of pure gaseous electrolytes in water (cf. Appendix II). The vapor phase is considered to behave like an ideal gas. The fugacity of pure water is replaced by the vapor pressure. For any molecular or ionic species i, except for water, the activity is expressed on the scale of molality m ... [Pg.145]

To calculate the multicomponent vapor-liquid equilibrium, equilibrium constants for chemical reactions 1-9 are taken from literature in comparison to the original publication, in the present work different numerical values for the second dissociations of hydrogen sulfide and sulfur dioxide were chosen (cf. Appendix III). Henry s constants are evaluated from single solute solubility data without neglecting Poynting corrections ... [Pg.148]

Now that we have considered the calculation of entropy from thermal data, we can obtain values of the change in the Gibbs function for chemical reactions from thermal data alone as well as from equilibrium data. From this function, we can calculate equilibrium constants, as in Equations (10.22) and (10.90.). We shall also consider the results of statistical thermodynamic calculations, although the theory is beyond the scope of this work. We restrict our discussion to the Gibbs function since most chemical reactions are carried out at constant temperature and pressure. [Pg.281]

The variation of efficiencies is due to interaction phenomena caused by the simultaneous diffusional transport of several components. From a fundamental point of view one should therefore take these interaction phenomena explicitly into account in the description of the elementary processes (i.e. mass and heat transfer with chemical reaction). In literature this approach has been used within the non-equilibrium stage model (Sivasubramanian and Boston, 1990). Sawistowski (1983) and Sawistowski and Pilavakis (1979) have developed a model describing reactive distillation in a packed column. Their model incorporates a simple representation of the prevailing mass and heat transfer processes supplemented with a rate equation for chemical reaction, allowing chemical enhancement of mass transfer. They assumed elementary reaction kinetics, equal binary diffusion coefficients and equal molar latent heat of evaporation for each component. [Pg.2]

Thermodynamic Equilibrium, Kinetics, Activation Barriers, and Reaction Mechanisms for Chemical Reactions in Karst Terrains (White, 1997) Solvent Effects On Isomerization Equilibria—an Energetic Analysis in the Framework of Density Functional Theory (Lelj and Adamo, 1995)... [Pg.188]

Supercritical solvents can be used to adjust reaction rate constants (k) by as much as two orders of magnitude by small changes in the system pressure. Activation volumes (slopes of In k vs P) as low as —6000 cm3/mol were observed for a homogeneous reaction (97). Pressure effects can also be pronounced on reversible reactions (17). In one example the equilibrium constant was increased from two- to sixfold by increasing the solvent pressure. The choice of supercritical solvent can also dramatically affect an equilibrium constant. An obvious advantage of using supercritical fluid solvents as a media for chemical reactions is the adjustability of the reaction kinetics and equilibria owing to solvent effects. [Pg.227]

This question is easy to answer There is always an equilibrium condition at the base of the discussion of any kinetic process. Nemst s equation is the electrochemical version of the well-known thermodynamic equation, AG = AG°+/KTln 0 /aKacam which forms a basic part of the treatment of equilibrium in chemical reactions and which is deduced and discussed in every thermodynamics text. Indeed, one can deduce Nemst s equation from it For at equilibrium ... [Pg.347]

The number of independent components, c, in a given system of interest can generally be evaluated as the total number of chemical species minus the number of relationships between concentrations. The latter may consist of initial conditions (defined by conditions of preparation of the system) or by chemical equilibrium conditions (for chemical reactions that are active in the actual system). Sidebar 7.1 provides illustrative examples of how c is determined in representative cases. [Pg.211]

For chemical reactions there is a convenient and natural way to specify the noise properties of the injection mechanism, which has already been used in some examples. One supposes that the molecules X are produced from a compound B, which is present in large amount and slowly decays into X. The production is then practically constant and the reverse reaction negligible, just as the production of helium by uranium may be regarded as constant. In other words, one describes the open system as a limiting case of a closed system that is not in equilibrium. The role of B is reduced to that of a reservoir. [Pg.177]

The question regarding the statistical nature of the equilibrium configuration arises only in the case of low barriers. For chemical reactions, such barriers would correspond to very high rate constants so they would not satisfy the initial TST assumption that the barrier height... [Pg.304]

A final interesting application of dehydration membranes is to shift the equilibrium of chemical reactions. For example, esterification reactions of the type... [Pg.377]

The postulates of Nernst are those that are required when we wish to determine equilibrium conditions for chemical reactions from thermal data alone. In order to calculate the equilibrium conditions, we need to know the value of AGe for the change of state involved. We take the standard states of the individual substances to be the pure substances at the chosen temperature and pressure. The value of AH° can be determined from measurements of the heat of reaction. We now have... [Pg.401]


See other pages where Equilibrium for chemical reaction is mentioned: [Pg.70]    [Pg.71]    [Pg.70]    [Pg.71]    [Pg.181]    [Pg.139]    [Pg.82]    [Pg.222]    [Pg.135]    [Pg.86]    [Pg.502]    [Pg.85]    [Pg.106]    [Pg.25]    [Pg.56]    [Pg.304]    [Pg.328]    [Pg.399]    [Pg.43]    [Pg.4]    [Pg.51]    [Pg.83]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Equilibrium for reactions

Equilibrium, chemical/reaction

For chemical reactions

© 2024 chempedia.info