Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constants strong electrolytes

As the titration begins, mostly HAc is present, plus some H and Ac in amounts that can be calculated (see the Example on page 45). Addition of a solution of NaOH allows hydroxide ions to neutralize any H present. Note that reaction (2) as written is strongly favored its apparent equilibrium constant is greater than lO As H is neutralized, more HAc dissociates to H and Ac. As further NaOH is added, the pH gradually increases as Ac accumulates at the expense of diminishing HAc and the neutralization of H. At the point where half of the HAc has been neutralized, that is, where 0.5 equivalent of OH has been added, the concentrations of HAc and Ac are equal and pH = pV, for HAc. Thus, we have an experimental method for determining the pV, values of weak electrolytes. These p V, values lie at the midpoint of their respective titration curves. After all of the acid has been neutralized (that is, when one equivalent of base has been added), the pH rises exponentially. [Pg.48]

To test the validity of the extended Pitzer equation, correlations of vapor-liquid equilibrium data were carried out for three systems. Since the extended Pitzer equation reduces to the Pitzer equation for aqueous strong electrolyte systems, and is consistent with the Setschenow equation for molecular non-electrolytes in aqueous electrolyte systems, the main interest here is aqueous systems with weak electrolytes or partially dissociated electrolytes. The three systems considered are the hydrochloric acid aqueous solution at 298.15°K and concentrations up to 18 molal the NH3-CO2 aqueous solution at 293.15°K and the K2CO3-CO2 aqueous solution of the Hot Carbonate Process. In each case, the chemical equilibrium between all species has been taken into account directly as liquid phase constraints. Significant parameters in the model for each system were identified by a preliminary order of magnitude analysis and adjusted in the vapor-liquid equilibrium data correlation. Detailed discusions and values of physical constants, such as Henry s constants and chemical equilibrium constants, are given in Chen et al. (11). [Pg.66]

Optical and nuclear magnetic resonance methods apphcable to moderately strong electrolytes have been made increasingly precise (14). By these methods, it has proved feasible to determine concentrations of the undissociated species and hence of the dissociation constants. Thus, for HNO3 in aqueous solution (14) at 25°C, K is 24. However, in dehning this equilibrium constant, we have changed the standard state for aqueous nitric acid, and the activity of the undissociated species is given by the equation... [Pg.485]

Barnett and co-workers recently reported that it might be possible to utilize hydrocarbons directly in SOFC with Ni-based anodes. " ° First, with methane. they observed that there is a narrow temperature window, between 550 and 650 °C. in which carbon is not as stable. The equilibrium constant for methane dissociation to carbon and Hz is strongly shifted to methane below 650 °C. and the equilibrium constant for the Boudouard reaction, the disproportionation of CO to carbon and COz, is shifted to CO above 550 °C. Therefore, in this temperature range, they reported that it is possible to operate the cell in a stable manner. (However, a subsequent report by this group showed that there is no stable operating window for ethane due to the fact that carbon formation from ethane is shifted to lower temperatures. ) In more recent work, this group has suggested that, even when carbon does form on Ni-based anodes, it may be possible to remove this carbon as fast as it forms if the flux from the electrolyte is sufficient to remove carbon faster than it is formed.Observations by Weber et al. have confirmed the possibility of stable operation in methane. Similarly, Kendall et al. showed that dilution of methane with COz caused a shift in the reaction mechanism that allowed for more stable operation. [Pg.614]

It is instructive to consider the effect of dissociation on the adsorption of amphipathic substances since many of the compounds that behave according to curve 3 are electrolytes. We consider only the case of strong 1 1 electrolytes for weak electrolytes the equilibrium constant for dissociation must be considered. [Pg.330]

PK. A measurement of the complete ness of an incomplete chemical reaction. It is defined as the negative logarithm ito the base 101 of the equilibrium constant K for the reaction in question. The pA is most frequently used to express the extent of dissociation or the strength of weak acids, particularly fatty adds, amino adds, and also complex ions, or similar substances. The weaker an electrolyte, the larger its pA. Thus, at 25°C for sulfuric add (strong acid), pK is about -3,0 acetic acid (weak acid), pK = 4.76 bone acid (very weak acid), pA = 9.24. In a solution of a weak acid, if the concentration of undissociated acid is equal to the concentration of the anion of the acid, the pAr will be equal to the pH. [Pg.1313]

Let s consider the solubility equilibrium in a saturated solution of calcium fluoride in contact with an excess of solid calcium fluoride. Like most sparingly soluble ionic solutes, calcium fluoride is a strong electrolyte in water and exists in the aqueous phase as dissociated hydrated ions, Ca2+(aq) and F (aq). At equilibrium, the ion concentrations remain constant because the rate at which solid CaF2 dissolves to give Ca2+(aq) and F aq) exactly equals the rate at which the ions crystallize to form solid CaF2 ... [Pg.689]

From Eqn. (14) it follows that with an exothermic reaction - and this is the case for most reactions in reactive absorption processes - decreases with increasing temperature. The electrolyte solution chemistry involves a variety of chemical reactions in the liquid phase, for example, complete dissociation of strong electrolytes, partial dissociation of weak electrolytes, reactions among ionic species, and complex ion formation. These reactions occur very rapidly, and hence, chemical equilibrium conditions are often assumed. Therefore, for electrolyte systems, chemical equilibrium calculations are of special importance. Concentration or activity-based reaction equilibrium constants as functions of temperature can be found in the literature [50]. [Pg.278]

From all that has been said about activity and activity coefficients, it is apparent that whenever precise results are to be expected, activities should be used when expressing equilibrium constants or other thermodynamic functions. In the present text however we shall be using simply concentrations. For the dilute solutions of strong and weak electrolytes that are mainly used in qualitative analysis, errors introduced into calculations are not considerable. [Pg.25]

How does the cell constant k compare with the geometric value HA obtained from an approximate measurement of the dimensions of your ceU Why is the equivalent conductance Aq so large for an HCl solution How do the slopes of your A versus -Jc plots for strong electrolytes compare with literature values and the values expected from Onsager s theory Find a literature (or textbook) value for the equilibrium constant for HAc ionization. Using this value and Eq. (13), draw a dashed literature/theory line on your plot of log versus -Jm. Are the deviations of your data points from this line reasonable in view of the experimental errors expected in this work What is the limiting factor in the accuracy of your measurements ... [Pg.244]

Compounds of this type may be classified as strong electrolytes, which dissociate almost completely into ions in solution, or as weak electrolytes, which only dissociate to a small extent in solution. Since strong electrolytes are almost completely dissociated in solution, measurement of the equilibrium constant for their dissociation is very difficult. For weak electrolytes, however, the dissociation can be expressed by the law of mass action in terms of the equilibrium constant. [Pg.1]

Eq. (B.l) will allow fairly accurate estimates of the aetivity coefficients in mixtures of electrolytes if the ion interaction coefficients are known. Ion interaction coefficients for simple ions can be obtained from tabulated data of mean activity coefficients of strong electrolytes or from the corresponding osmotic coefficients. Ion interaction coefficients for complexes can either be estimated from the charge and size of the ion or determined experimentally from the variation of the equilibrium constant with the ionic strength. [Pg.590]

Such electrolytes do not dissolve or dissociate in steps because they are really strong electrolytes. That portion that dissolves ionizes completely. Therefore, we do not have stepwise K p values. As with any equilibrium constant, the K p product holds under all equilibrium conditions at the specified temperature. Since we are dealing with heterogeneous equilibria, the equilibrium state will be achieved more slowly than with homogeneous solution equilibria. [Pg.327]

Note the strong dependence on the charge number. As shown elsewhere, the equilibrium constant of a 1 1 weak electrolyte like acetic acid is increased by an electric field of 100 kV cm to about 14%, that for a 2 2 electrolyte like MgS04 to about 110%. ° Compared to simple dipolar equilibria of small molecules where electric-field-induced changes in K are very small, we see that the dissociation step of simple ion pairs is associated... [Pg.136]

The equilibrium constant for reaction (89), based on nole-fraction-composltion, strong-electrolyte standard states fOr HC1[I 0] and DGl[DoO]. is 0-715 at 298.I5 K. Because this value of K for reaction C89) refers to strong electrolytes,we can rewrite equation (89) as... [Pg.158]

As we have seen in several examples in this chapter, HCN acts as an acid in aqueous solutions. We introduced a few fundamental concepts of acids and bases in Chapter 3, but the context of equilibrium allows us to explore them further. Recall that we distinguished between strong acids (or bases), which dissociate completely in solution, and weak acids (or bases), which dissociate only partially. At this point in our study of chemistry, we should realize that this partial dissociation of weak electrolytes was an example of a system reaching equilibrium. So we can use equilibrium constants to characterize the relative strengths of weak acids or bases. One common way to do this is to use the pH scale, which we will define in this section. [Pg.510]

HCI is a typical strong electrolyte, virtually completely dissociated into ions at ambient conditions. Nevertheless, careful work can determine an equilibrium constant for the reaction... [Pg.428]


See other pages where Equilibrium constants strong electrolytes is mentioned: [Pg.220]    [Pg.659]    [Pg.261]    [Pg.124]    [Pg.18]    [Pg.563]    [Pg.656]    [Pg.24]    [Pg.183]    [Pg.2168]    [Pg.846]    [Pg.274]    [Pg.225]    [Pg.998]    [Pg.53]    [Pg.221]    [Pg.58]    [Pg.2167]    [Pg.476]    [Pg.559]    [Pg.627]    [Pg.519]    [Pg.209]    [Pg.119]    [Pg.648]    [Pg.140]    [Pg.140]    [Pg.127]    [Pg.668]    [Pg.721]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Strong electrolytes

© 2024 chempedia.info