Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxy resins, oxidation

Polyethers are obtained from three different classes of monomers, namely, carbonyl compounds, cyclic ethers, and phenols. They are manufactured by a variety of polymerization processes, such as polymerization (polyacetal), ring-opening polymerization (polyethylene oxide, polyprophylene oxide, and epoxy resins), oxidative coupling (Polyphenylene oxide), and polycondensation (polysulfone). [Pg.486]

Mukbaniani, O. Aneli, J. Markarashvili, E. Titvinidze, G. Katsitadze, M. Goges-ashvili, N. Effect of Modification of Bentonite by TetraethoxysUane on the Properties of Composites Based on Epoxy Resin. Oxidation Communications, 2010, 33(3). 555. [Pg.354]

Nickel dialkyldithiocarbamates stabili2e vulcani2ates of epichlorhydrinethylene oxide against heat aging (178). Nickel dibutyldithiocarbamate [56377-13-0] is used as an oxidation inhibitor in synthetic elastomers. Nickel chelates of substituted acetylacetonates are flame retardants for epoxy resins (179). Nickel dicycloalkyldithiophosphinates have been proposed as flame-retardant additives for polystyrene (180—182) (see Flame retardants Heat stabilizers). [Pg.15]

High purity 4-dodecylphenol is used to produce specialty surfactants by its reaction with ethylene oxide. The low color of high purity 4-dodecylphenol is important in this appHcation from a standpoint of aesthetics. 4-Dodecylphenol is also used to produce phenoHc resins which are used in adhesive appHcations and printing inks. 4-Dodecylphenol is also used as an epoxy curing catalyst where the addition of 4-dodecylphenol accelerates curing of the epoxy resin to a hard, nontacky soHd. [Pg.67]

Isopropa.nola.mines. Reaction of propylene oxide with ammonia yields mono-, di-, and triisopropanolamines. These products find use as soluble oils and solvents, emulsifiers, waterless hand cleaners, cosmetics, cleaners, and detergents. In industrial apphcations isopropanolamines are used in adhesives, agricultural products, corrosion inhibitors, coatings, epoxy resins, metalworking, and others (51). [Pg.143]

The positive plates are siatered silver on a silver grid and the negative plates are fabricated from a mixture of cadmium oxide powder, silver powder, and a binder pressed onto a silver grid. The main separator is four or five layers of cellophane with one or two layers of woven nylon on the positive plate. The electrolyte is aqeous KOH, 50 wt %. In the aerospace appHcations, the plastic cases were encapsulated in epoxy resins. Most usehil cell sizes have ranged from 3 to 15 A-h, but small (0.1 A-h) and large (300 A-h) sizes have been evaluated. Energy densities of sealed batteries are 26-31 W-h/kg. [Pg.557]

Tertiary bismuthines appear to have a number of uses in synthetic organic chemistry (32), eg, they promote the formation of 1,1,2-trisubstituted cyclopropanes by the iateraction of electron-deficient olefins and dialkyl dibromomalonates (100). They have also been employed for the preparation of thin films (qv) of superconducting bismuth strontium calcium copper oxide (101), as cocatalysts for the polymerization of alkynes (102), as inhibitors of the flammabihty of epoxy resins (103), and for a number of other industrial purposes. [Pg.131]

The cycloahphatic products are generally Hquids of lower viscosity than the standard glycidyl ether resins. The peroxidized resins contain no chlorine and low ash content and their ring-contained oxirane group (cyclohexene oxide type) reacts more readily with acidic curing agents than the bisphenol A-derived epoxy resins. [Pg.364]

Cellulose Esters Epoxy Resins Lignins Polystyrene Poly (2-vinyl pyridine) Polyvinyl Chloride Polymethyl methacrylate Polyphenylene Oxide Phenolics Polycarbonate Polyvinyl Acetate, etc. Polyvinyl butyral SBR rubber, etc., etc. [Pg.161]

Antimonious acid H3Sb03 and its salts are less well characterized but a few meta-antimonites and polyantimonites are known, e.g. NaSb02, NaSb305.H20 and Na2Sb407. The oxide itself finds extensive use as a flame retardant in fabrics, paper, paints, plastics, epoxy resins, adhesives and rubbers. The scale of industrial use can be gauged from the US statistics which indicate an annual consumption of Sb203 of some 10000 tonnes in that country. [Pg.575]

The liquid nitrile rubbers are generally used as nonvolatile and nonextractable plasticizers. They also function as binders and modifiers for epoxy resins. Their moderate heat resistance limits their ability to meet industrial requirements. Hence, attempts have been made to improve their thermal and oxidative resistance by saturating the polymer backbone. [Pg.566]

Siloxane containing polyester, poly(alkylene oxide) and polystyrene type copolymers have been used to improve the heat resistance, lubricity and flow properties of epoxy resin powder coatings 43). Thermally stable polyester-polysiloxane segmented copolymers have been shown to improve the flow, antifriction properties and scratch resistance of acrylic based auto repair lacquers 408). Organohydroxy-terminated siloxanes are also effective internal mold release agents in polyurethane reaction injection molding processes 409). [Pg.74]

Composite Particles, Inc. reported the use of surface-modified rubber particles in formulations of thermoset systems, such as polyurethanes, polysulfides, and epoxies [95], The surface of the mbber was oxidized by a proprietary gas atmosphere, which leads to the formation of polar functional groups like —COOH and —OH, which in turn enhanced the dispersibility and bonding characteristics of mbber particles to other polar polymers. A composite containing 15% treated mbber particles per 85% polyurethane has physical properties similar to those of the pure polyurethane. Inclusion of surface-modified waste mbber in polyurethane matrix increases the coefficient of friction. This finds application in polyurethane tires and shoe soles. The treated mbber particles enhance the flexibility and impact resistance of polyester-based constmction materials [95]. Inclusion of treated waste mbber along with carboxyl terminated nitrile mbber (CTBN) in epoxy formulations increases the fracture toughness of the epoxy resins [96]. [Pg.1055]

Propylene oxide was introduced into a container that contained epoxy resins it detonated. This accident was put down to compound polymerisation catalysed by triamines or superior homologues, which are used to harden resins (for example, triethylenetetramine). [Pg.266]


See other pages where Epoxy resins, oxidation is mentioned: [Pg.199]    [Pg.700]    [Pg.199]    [Pg.700]    [Pg.160]    [Pg.335]    [Pg.517]    [Pg.330]    [Pg.73]    [Pg.487]    [Pg.531]    [Pg.361]    [Pg.66]    [Pg.88]    [Pg.162]    [Pg.278]    [Pg.400]    [Pg.259]    [Pg.493]    [Pg.182]    [Pg.631]    [Pg.138]    [Pg.452]    [Pg.115]    [Pg.421]    [Pg.629]    [Pg.442]    [Pg.8]    [Pg.874]    [Pg.53]    [Pg.167]    [Pg.321]    [Pg.206]   
See also in sourсe #XX -- [ Pg.429 ]




SEARCH



Oxidizing Resins

Resins, oxidation

© 2024 chempedia.info