Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides epoxy substrates

The MABR-promoted rearrangement, when applied to optically active epoxy substrates, has been shown to proceed with rigorous transfer of the epoxide chirality. Accordingly, used in combination with the Sharpless asymmetric epoxidation of allylic alcohols,5 this rearrangement represents a new approach to the synthesis of various... [Pg.203]

Epoxy resins based on glycidylation of bisphenols, cresol and phenol novolacs, polycarboxylic acids, polyols, amines, and aminophenols have been long known. Epoxidized linear and cyclic olefins have also been used as specialty epoxy resins. More recently, glycidylated heterocycles have been introduced, initially as specialty resins promising improved resistance to weathering. One heterocycle in particular, the hydantoin ring, has become of particular interest as an epoxy substrate (J ). [Pg.115]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

Desymmetrization of meso-bis-allylic alcohols is an effective method for the preparation of chiral functionalized intermediates from meso-substrates. Schreiber et al has shown that divinyl carbonyl 58 is epoxidized in good enantioselectivity. However, because the product epoxy alcohols 59 and 60 also contain a reactive allylic alcohol that are diastereomeric in nature, a second epoxidation would occur at different rates and thus affect the observed ee for the first AE reaction and the overall de. Indeed, the major diastereomeric product epoxide 59 resulting from the first AE is less reactive in the second epoxidation. Thus, high de is easily obtainable since the second epoxidation removes the minor diastereomer. [Pg.60]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

The past thirty years have witnessed great advances in the selective synthesis of epoxides, and numerous regio-, chemo-, enantio-, and diastereoselective methods have been developed. Discovered in 1980, the Katsuki-Sharpless catalytic asymmetric epoxidation of allylic alcohols, in which a catalyst for the first time demonstrated both high selectivity and substrate promiscuity, was the first practical entry into the world of chiral 2,3-epoxy alcohols [10, 11]. Asymmetric catalysis of the epoxidation of unfunctionalized olefins through the use of Jacobsen s chiral [(sale-i i) Mi iln] [12] or Shi s chiral ketones [13] as oxidants is also well established. Catalytic asymmetric epoxidations have been comprehensively reviewed [14, 15]. [Pg.447]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

These epoxide-opening conditions were originally developed by Sharpless and coworkers for the regiocontrolled opening of 2,3-epoxy alcohols [30]. It has been proposed that ligand exchange of the substrate with isopropoxide forms a covalently bound substrate-titanium complex (Chart 3.3). Nucleophilic attack on this complex at the 3-position is favored over attack at the 2-position. In the case of 49,... [Pg.49]

The idea of double asymmetric induction is also applicable to asymmetric epoxidation (see Chapter 1 for double asymmetric induction). In the case of asymmetric epoxidation involving double asymmetric induction, the enantiose-lectivity depends on whether the configurations of the substrate and the chiral ligand are matched or mismatched. For example, treating 7 with titanium tet-raisopropoxide and t-butyl hydroperoxide without (+)- or ( )-diethyl tartrate yields a mixture of epoxy alcohols 8 and 9 in a ratio of 2.3 1 (Scheme 4 3). In a... [Pg.197]

Titanium enolates.1 This Fischer carbene converts epoxides into titanium enolates. In the case of cyclohexene oxide, the product is a titanium enolate of cyclohexanone. But the enolates formed by reaction with 1,2-epoxybutane (equation I) or 2,3-epoxy butane differ from those formed from 2-butanone (Equation II). Apparently the reaction with epoxides does not involve rearrangement to the ketone but complexation of the epoxide oxygen to the metal and transfer of hydrogen from the substrate to the methylene group. [Pg.49]

We have chosen epoxy olefin 10 as substrate for our initial examinations for two reasons. Firstly, 10 is synthesized in a straightforward manner from al-lyl diethyl malonate by epoxidation and an Sn2 reaction with prenyl bromide. Secondly, it is known from the work of others [17-20] and ourselves [65, 66,73,74] that compounds similar to 10 cyclize to yield mainly the essential ds-fused radicals with selectivities of about 85 15 to 90 10. [Pg.74]

I. 1.4.1] catalyzes the reaction of 2-methyl-3-phytyl-l,4-naphthoquinone with oxidized dithiothreitol and water to produce 2,3-epoxy-2,3-dihydro-2-methyl-3-phytyl-l,4-naphthoquinone and 1,4-dithiothreitol. In the reverse reaction, vitamin K 2,3-epoxide is reduced to vitamin K and possibly to vitamin K hydroquinone by 1,4-dithioer-ythritol (which is oxidized to the disulfide). Some other dithiols and butane-4-thiol can also act as substrates. This enzyme is strongly inhibited by warfarin. [Pg.700]


See other pages where Epoxides epoxy substrates is mentioned: [Pg.203]    [Pg.251]    [Pg.575]    [Pg.1088]    [Pg.99]    [Pg.248]    [Pg.375]    [Pg.57]    [Pg.57]    [Pg.191]    [Pg.321]    [Pg.362]    [Pg.58]    [Pg.297]    [Pg.303]    [Pg.733]    [Pg.275]    [Pg.376]    [Pg.73]    [Pg.198]    [Pg.22]    [Pg.23]    [Pg.204]    [Pg.260]    [Pg.115]    [Pg.446]    [Pg.263]    [Pg.269]    [Pg.109]    [Pg.367]    [Pg.153]    [Pg.102]    [Pg.1230]    [Pg.167]    [Pg.395]    [Pg.396]    [Pg.413]   


SEARCH



Epoxide Epoxy

Epoxides substrates

Epoxy substrates

© 2024 chempedia.info