Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epinephrine inhibitors

The COMT inhibitors should not be administered with the monoamine oxidase (MAO) inhibitors (see Chap. 31) because there is an increased risk of toxicity. If the COMT inhibitors are administered with norepinephrine, dopamine, dobutamine, methyldopa, or epinephrine, there is a risk of increased heart rate, arrhythmias, and excessive blood pressure changes. [Pg.269]

Serious adverse effects of epinephrine potentially occur when it is given in an excessive dose, or too rapidly, for example, as an intravenous bolus or a rapid intravenous infusion. These include ventricular dysrhythmias, angina, myocardial infarction, pulmonary edema, sudden sharp increase in blood pressure, and cerebral hemorrhage. The risk of epinephrine adverse effects is also potentially increased in patients with hypertension or ischemic heart disease, and in those using (3-blockers (due to unopposed epinephrine action on vascular Ui-adrenergic receptors), monoamine oxidase inhibitors, tricyclic antidepressants, or cocaine. Even in these patients, there is no absolute contraindication for the use of epinephrine in the treatment of anaphylaxis [1,5,6]. [Pg.213]

Phosphorylation of cardiac calcium-channel proteins increases the probability of channel opening during membrane depolarization. It should be noted that cAMP is inactivated by phosphodiesterase. Inhibitors of this enzyme elevate intracellular cAMP concentration and elicit effects resembling those of epinephrine. [Pg.66]

Inhibitors of monoamine oxi-dase-B (MAOb). This isoenzyme breaks down dopamine in the corpus striatum and can be selectively inhibited by selegiline. Inactivation of norepinephrine, epinephrine, and 5-HT via MAOa is unaffected. The antiparkinsonian effects of selegiUne may result from decreased dopamine inactivation (enhanced levodopa response) or from neuroprotective mechanisms (decreased oxyradical formation or blocked bioactivation of an unknown neurotoxin). [Pg.188]

Monoaminooxidase is a complex enzymatic system that is present in practically every organ that catalyzes deamination or inactivation of various natural, biogenic amines, in particular norepinephrine (noradrenaline), epinephrine (adrenaline), and serotonin. Inhibition of MAO increases the quantity of these biogenic amines in nerve endings. MAO inhibitors increase the intercellular concentration of endogenous amines by inhibiting then-deamination, which seems to be the cause of their antidepressant action. [Pg.110]

Drugs that may interact with linezolid include monoamine oxidase inhibitors, SSRIs, and adrenergic agents (eg, dopamine, epinephrine). [Pg.1628]

MAO is a much less discriminating enzyme in that it will catalyze the removal of an amine group from a variety of substrates. The action of MAO on norepinephrine and epinephrine also is indicated in Figure 9.5. The list of its substrates is very large, including endogenous substances (norepinephrine, epinephrine, dopamine, tyramine, 5-hydroxy-tryptamine) and many drugs that are amines. At least in the brain, two separate forms of MAO have been described MAO type A and MAO type B. The two types are differentiated on the basis of substrate and inhibitor specificity. [Pg.91]

MAO A and B differ in primary structure and in substrate specificity [5,7]. The two isozymes, located on the mitochondrial outer membranes, have 70% homology in peptide sequence and share common mechanistic details. It is now recognized that these are different proteins encoded by different genes, but probably derived from a common ancestral gene. Crystal structures for both MAO A and B complexes with inhibitors have recently been reported [8]. Serotonin is selectively oxidized by MAO A, whereas benzylamine and 2-phenylethylamine are selective substrates for MAO B. Dopamine, norepinephrine, epinephrine, trypt-amine, and tyramine are oxidized by both MAO A and B in most species [9]. In addition, MAO A is more sensitive to inhibition by clorgyline (1), whereas MAO B is inhibited by low concentrations of L-deprenyl ((f )-( )-deprenyl) (2) [5,6cj. Development of inhibitors that are selective for each isozyme has been an extremely active area of medicinal chemistry [8]. [Pg.663]

R.W. Fuller, S.K. Hemrick-Luecke, Elevation of epinephrine concentration in rat brain by LY51641, a selective inhibitor of type A monoamine oxidase. Res. Commun. Chem. Pathol. Pharmacol. 32 (1981) 207-221. [Pg.695]

Beta-blockers interact with a large number of other medications. The combination of beta-blockers with calcium antagonists should be avoided, given the risk for hypotension and cardiac arrhythmias. Cimetidine, hydralazine, and alcohol all increase blood levels of beta-blockers, whereas rifampicin decreases their concentrations. Beta-blockers may increase blood levels of phenothiazines and other neuroleptics, clonidine, phen-ytoin, anesthetics, lidocaine, epinephrine, monoamine oxidase inhibitors and other antidepressants, benzodiazepines, and thyroxine. Beta-blockers decrease the effects of insulin and oral hypoglycemic agents. Smoking, oral contraceptives, carbamazepine, and nonsteroidal anti-inflammatory analgesics decrease the effects of beta-blockers (Coffey, 1990). [Pg.356]

Monoamine oxidase inhibitors. The monoamine oxidase inhibitors (MAOIs) inhibit the intracellular catabolic enzyme monoamine oxidase. There are two types of monoamine oxidase MAO-A and MAO-B, both of which metabolize tyramine and dopamine. In addition, MAO-A preferentially metabolizes norepinephrine, epinephrine, and serotonin, and MAO-B preferentially metabolizes phenylethylamine (an endogenous amphetamine-like substance) and N-methylhistamine (Ernst, 1996). Some MAOIs are selective for A or B and some are nonselective (mixed). In addition, irreversible MAOIs (e.g., phenelzine, tranylcypromine) are more susceptible to the cheese effect than are the reversible agents (e.g., moclobemide). [Pg.454]

A dose of 1 at 30 mg/kg increased the effects of intravenous doses of epinephrine at 5 g/kg and of dl-noreplnephrine at 10 ug/kg on both blood flow and blood pressure. Intravenous phenoxybenzamine at 15 mg/kg plus tolazollne at 2 mg/kg prevented almost completely the actions of I on blood pressure and blood flow Intravenous reserpine at 2 mg/kg increased markedly the effects of I at 30 mg/kg on blood pressure and peripheral resistance, but converted the usual immediate, small, temporary increase in blood flow into an immediate, small, temporary decrease. These various responses would be expected from either a mild sympathomimetic amine or an inhibitor of the breakdown of endogenous catecholamines Indeed, I at 10 M, was found to inhibit the monoamlneoxldase of the rat s liver. If the dose of I used in these experiments were distributed into the same fraction of the body water as that estimated for the human body,the concentration in the plasma would be about 9 times that stated above as the effective concentration for inhibiting the mono amine oxIdase. It is possible that inhibition of monoamlneoxldase by I plays a part in inducing the effects of the oxime on blood vessels and blood pressure. It is possible also that I interferes with reuptake of catecholamines by nerve endings this possibility seems not to have been explored. [Pg.290]

The enzyme MAO metabolizes some of the neurotransmitters affected by some drugs of abuse, namely epinephrine, norepinephrine, dopamine, and serotonin. Dangerously high levels can result if an inhibitor of this enzyme, or monoamine oxidase inhibitor (MAOI), is used along with the drug of abuse. [Pg.29]

Pheochromocytoma is sometimes treated with metyrosine (cx-methyltyrosine), the -methyl analog of tyrosine. This agent is a competitive inhibitor of tyrosine hydroxylase, the rate-limiting step in the synthesis of dopamine, norepinephrine, and epinephrine (see Figure 6-5). Metyrosine is especially useful in symptomatic patients with inoperable or metastatic pheochromocytoma. Because it has access to the central nervous system, metyrosine can cause extrapyramidal effects due to reduced dopamine levels. [Pg.204]

The regulated step in fatty acid synthesis (acetyl CoA - malonyl CoA) is catalyzed by acetyl CoA carboxylase, which requires biotin. Citrate is the allosteric activator, and long-chain fatty acyl CoA is the inhibitor. The enzyme can also be activated in the presence of insulin and inactivated in the presence of epinephrine or glucagon. [Pg.484]

Other drugs that may be prescribed in conjunction with diuretics for the treatment of CHF include vasodilators (drugs that dilate blood vessels, such as ACE inhibitors) inotropics (drugs that increase the heart s ability to contract, such as digoxin) and beta blockers (drugs that inhibit the action of epinephrine, such as carvedilol). [Pg.174]


See other pages where Epinephrine inhibitors is mentioned: [Pg.864]    [Pg.166]    [Pg.864]    [Pg.166]    [Pg.36]    [Pg.205]    [Pg.337]    [Pg.198]    [Pg.423]    [Pg.105]    [Pg.213]    [Pg.156]    [Pg.84]    [Pg.382]    [Pg.611]    [Pg.16]    [Pg.680]    [Pg.700]    [Pg.333]    [Pg.539]    [Pg.539]    [Pg.307]    [Pg.62]    [Pg.221]    [Pg.295]    [Pg.413]    [Pg.588]    [Pg.196]    [Pg.14]    [Pg.896]    [Pg.149]    [Pg.36]    [Pg.84]    [Pg.317]    [Pg.92]    [Pg.169]    [Pg.482]   
See also in sourсe #XX -- [ Pg.413 ]




SEARCH



Epinephrin

Epinephrine

© 2024 chempedia.info