Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes in hydrolysis

Porcine pancreatic PLA2 is the most widely used enzyme in hydrolysis and in synthesis. Utilization of PLA2 from venom (snake or bee) or microbial PLA2 (Streptomyces violaceoruber) for esterification of LPC and FFA has been reported in only one study [6]. In addition, lysophosphatidylethanolamine (LPE) was used as a substrate for PE synthesis [10], although bee venom PLA2 did not promote esterification. [Pg.323]

An example of a biologically important aide hyde is pyridoxal phosphate which is the active form of vitamin Bg and a coenzyme for many of the reac tions of a ammo acids In these reactions the ammo acid binds to the coenzyme by reacting with it to form an imine of the kind shown in the equation Re actions then take place at the ammo acid portion of the imine modifying the ammo acid In the last step enzyme catalyzed hydrolysis cleaves the imme to pyridoxal and the modified ammo acid... [Pg.728]

Resistance. Resistance to the cephalosporins may result from the alteration of target pencillin-binding sites (PBPs), decreased permeabdity of the bacterial ced wad and outer membrane, or by inactivation via enzyme mediated hydrolysis of the lactam ring (80,81,138—140). This resistance can be either natural or acquired. Although resistance is often attributed speciftcady to one of these factors, in reaUty it reflects the interplay of several factors. In most instances, however, resistance results from the production of a P-lactamase enzyme, which opens the P-lactam ring as depicted in Figure 2. [Pg.30]

Oligo- and higher saccharides are produced extensively by acid-and/or enzyme-catalyzed hydrolysis of starch, generally in the form of symps of mixtures (12). These products are classified by thek dextrose equivalency (DE), which is an indication of thek molecular size and is a measure of thek reducing power with the DE value of anhydrous D-glucose defined as 100. [Pg.483]

The enzyme catalyzes the hydrolysis of an amide bond linkage with water via a covalent enzyme-inhibitor adduct. Benzoxazinones such as 2-ethoxy-4H-3,l-benzoxazin-4-one [41470-88-6] (23) have been shown to completely inactivate the enzyme in a competitive and stoichiometric fashion (Eigure 5). The intermediate (25) is relatively stable compared to the enzyme-substrate adduct due to the electron-donating properties of the ortho substituents. The complex (25) has a half-life of reactivation of 11 hours. [Pg.324]

The years that have passed since Sanger determined the structure of insulin have seen refinements in technique while retaining the same overall strategy. Enzyme-catalyzed hydrolysis to convert a large peptide to smaller fragments remains an important... [Pg.1133]

The report from Sheldon and co-workers was the second publication demonstrating the potential use of enzymes in ionic liquids and the first one for lipases (Entry 13) [43]. They compared the reactivity of Candida antarctica lipase in ionic liquids such as [BMIM][PFg] and [BMIM][BF4] with that in conventional organic solvents. In all cases the reaction rates were similar for all of the reactions investigated alcoholysis, ammoniolysis, and per hydrolysis. [Pg.344]

The nucleic acids DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are biological polymers that act as chemical carriers of an organism s genetic information. Enzyme-catalyzed hydrolysis of nucleic acids yields nucleotides, the monomer units from which RNA and DNA are constructed. Further enzyme-catalyzed hydrolysis of the nucleotides yields nucleosides plus phosphate. Nucleosides, in turn, consist of a purine or pyrimidine base linked to Cl of an aldopentose sugar—ribose in RNA and 2-deoxyribose in DNA. The nucleotides are joined by phosphate links between the 5 phosphate of one nucleotide and the 3 hydroxyl on the sugar of another nucleotide. [Pg.1119]

Endothelial-anchored enzyme in multiple tissues primarily responsible for hydrolysis of phospholipids in HDL. [Pg.470]

Endothelial-anchored enzyme in liver primarily responsible for hydrolysis of triglycerides and phospholipids in Intermediate Density Lipoproteins (IDL) and High Density Lipoproteins (HDL). [Pg.582]

Enzyme mediated hydrolysis of racemic arenesulphinyl alkanoates 279 may also be considered as a method of kinetic resolution. Racemic sulphoxides 279 incubated in the presence of Carynebacterium equi IF 3730 was found to give recovered sulphoxide in optically active form with e.e. higher than 90%338. [Pg.297]

Enzyme-mediated hydrolysis of some racemic co-arenesulfinylalkanoic methyl esters, ArSO(CH2) COOMe, using Corynebacterium equi has led to a kinetic resolution in which the unreacted sulfinyl esters are enriched in one enantiomer at the sulfoxide center49. The enantiomeric purity of unreacted sulfinyl acetates and propionate ranges from 90 to 97%. [Pg.829]

Another approach for the synthesis of enantiopure amino acids or amino alcohols is the enantioselective enzyme-catalyzed hydrolysis of hydantoins. As discussed above, hydantoins are very easily racemized in weak alkaline solutions via keto enol tautomerism. Sugai et al. have reported the DKR of the hydantoin prepared from DL-phenylalanine. DKR took place smoothly by the use of D-hydantoinase at a pH of 9 employing a borate buffer (Figure 4.17) [42]. [Pg.101]

Figure 6.67 Convergent hydrolysis using two enzymes in sequ... Figure 6.67 Convergent hydrolysis using two enzymes in sequ...
An intriguing influence of a cosolvent immiscible with water on the enantioselec-tivity of the enzyme-catalyzed hydrolysis was observed. It was proven that enzyme enantioselectivity is directly correlated with the cosolvent hydrophobicity. In the best example, for ethyl ether as cosolvent, the reaction proceeded with E = 55, and the target compound was obtained in 33% yield with 92.7% ee. This finding may be of great practical importance, particularly in industrial processes [24], since it will enable better optimization of enzyme-catalyzed processes. It is clear that, in future, immobilized enzymes, as heterogeneous catalysts, wiU be widely used in most industrial transformations, especially in the preparation of pharmaceuticals [25]. [Pg.101]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]


See other pages where Enzymes in hydrolysis is mentioned: [Pg.76]    [Pg.413]    [Pg.250]    [Pg.883]    [Pg.76]    [Pg.413]    [Pg.250]    [Pg.883]    [Pg.1291]    [Pg.363]    [Pg.446]    [Pg.623]    [Pg.813]    [Pg.944]    [Pg.75]    [Pg.242]    [Pg.191]    [Pg.342]    [Pg.346]    [Pg.409]    [Pg.208]    [Pg.866]    [Pg.728]    [Pg.1047]    [Pg.457]    [Pg.158]    [Pg.91]    [Pg.133]    [Pg.43]    [Pg.172]    [Pg.28]    [Pg.340]    [Pg.224]    [Pg.39]    [Pg.237]   


SEARCH



Enzyme Enzymic hydrolysis

Hydrolysis enzymic

© 2024 chempedia.info