Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes activity limitation

However, the major disadvantages of electrochemical sensors have to be mentioned low or lack of selectivity, low reproducibility, and difficult validation of the analytical method. The most difficult problems to overcome for biosensors are reduced stability, rapid loss of enzyme activity, limited lifetime of biosensors, electrochemical interferences from complex sample matrices, bioincompatibility, and biofouling in case of in vivo measurements. [Pg.175]

Eor measurement of a substrate by a kinetic method, the substrate concentration should be rate-limiting and should not be much higher than the enzyme s K. On the other hand, when measuring enzyme activity, the enzyme concentration should be rate-limiting, and consequentiy high substrate concentrations are used (see Catalysis). [Pg.38]

Nowadays the one of the leading cause of death in industrial country is Heart Failure (HF). Under the pathological conditions (e.g., Ischemic Heart Disease (IHD)) the changes in the enzymes activity and ultrastructure of tissue were obtained. The behavior of trace elements may reflect the activity of different types of enzymes. Pathological changes affects only small area of tissue, hence the amount of samples is strictly limited. Thereby, nondestructive multielemental method SRXRF allow to perfonu the analysis of mass samples in a few milligrams, to save the samples, to investigate the elemental distribution on the sample area. [Pg.353]

The enzyme had a requirement for calcium. The addition of EDTA to the reaction mixtures, resulted in complete loss of activity, whereas the addition of CaCl2 increased the activity (figure 8). Presumably, sufficient contaminating calcium ions were present in the dialyzed enzyme and substrate mixture to permit the limited activity of the controls, but apparently these were removed by chelation with EDTA. The optimum concentration was in the range of 5 to 15 M, and higher concentration resulted in a decrease in activity. Phoma medicaginis var. pinodella synthesizes a pectin lyase that lacked an absolute requirement for calcium ions but maximum enzyme activity required the presence of 1 mM Ca [25]. The lyase from Fusarium solani f sp. phaseoli, that is active on pectin and pectic acid, is calcium-dependent [30]. Most of the pectate lyases characterized are calcium-dependent the pectate lyase from Rhizoctonia solani [34] and the endopectate lyase fi om Fusarium solani f sp. pisi [31]. [Pg.758]

In addition to enzyme activity, the concentration of an nonelectroactive substrate can be determined electrochemically by this technique. By keeping the substrate (analyte) the limiting reagent, the amount of product produced is directly related to the initial concentration of substrate. Either kinetic or equilibrium measurements can be used. Typically an enzyme which produces NADH is used because NADH is readily detected electrochemically. Lactate has been detected using lactate dehydrogenase, and ethanol and methanol detected using alcohol dehydrogenase... [Pg.29]

Lequea et al. used the activity of tyrosine apodecarboxylase to determine the concentration of the enzyme cofactor pyridoxal 5 -phosphate (vitamin B6). The inactive apoenzyme is converted to the active enzyme by pyridoxal 5 -phosphate. By keeping the cofactor the limiting reagent in the reaction by adding excess apoenzyme and substrate, the enzyme activity is a direct measure of cofactor concentration. The enzymatic reaction was followed by detecting tyramine formation by LCEC. The authors used this method to determine vitamin B6 concentrations in plasma samples. [Pg.29]

This similarity between MDMA and PCA is also observed in vivo in that PCA produces both an acute and long-term depletion of 5-HT (Fuller et al. 1975 Steranka et al. 1977). Like PCA, the acute decrease in 5-HT concentrations produced by MDMA is associated with a decrease in the activity of the rate-limiting enzyme for 5-HT synthesis, tryptophan hydroxylase (TPH). The timecourse of this change in cortical enzyme activity is also shown in figure 1. More detailed analysis of this acute effect of MDMA and kinetic analysis of TPH activity reveals that the decrease in enzyme activity actually precedes the decline in transmitter levels and is due to a reduction in the activity of the enzyme (Schmidt and Taylor 1987 Schmidt and Taylor 1988). As shown for the cortex in figure 3, the decrease in 5-HT... [Pg.180]

Typically, neurotoxic effects of drugs on monoamine neurons have been assessed from reductions in brain levels of monoamines and their metabolites, decreases in the maximal activity of synthetic enzymes activity, and decreases in the active uptake carrier. In the present study, the traditional markers described above have been used, including the measurement of the content of monoamines and their metabolites in brain at several different timepoints following drug administration. Since reports in the literature have documented that MDMA and MDA can inhibit the activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin synthesis (Stone et al. 1986 Stone et al. 1987). it is unclear whether MDMA-induced reductions in the content of serotonin and its metabolite 5-hydroxyin-doleacetic acid (5-HlAA) may be due to suppressed neurotransmission in otherwise structurally intact serotonin neurons or may represent the eonsequenee of the destruction of serotonin neurons and terminals. [Pg.197]

Hereditary methemoglobinemia is classified into three types a red blood cell type (type I), a generalized type (type II), and a blood cell type (type HI). Enzyme deficiency of type I is limited to red blood cells, and these patients show only the diffuse, persistent, slate-gray cyanosis not associated with cardiac or pulmonary disease. In type II, the enzyme deficiency occurs in all cells, and patients of this type have a severe neurological disorder with mental retardation that predisposes them to early death. Patients with type III show symptoms similar to those of patients with type I. The precise nature of type III is not clear, but decreased enzyme activity is observed in all cells (M9). It is considered that uncomplicated hereditary methemoglobinemia without neurological involvement arises from a defect limited to the soluble cytochrome b5 reductase and that a combined deficiency of both the cytosolic and the microsomal cytochrome b5 reductase occurs in subjects with mental retardation. Up to now, three missense mutations in type I and three missense mutations, two nonsense mutations, two in-frame 3-bp deletions, and one splicing mutation in type n have been identified (M3, M8, M31). [Pg.33]

PBPK and classical pharmacokinetic models both have valid applications in lead risk assessment. Both approaches can incorporate capacity-limited or nonlinear kinetic behavior in parameter estimates. An advantage of classical pharmacokinetic models is that, because the kinetic characteristics of the compartments of which they are composed are not constrained, a best possible fit to empirical data can be arrived at by varying the values of the parameters (O Flaherty 1987). However, such models are not readily extrapolated to other species because the parameters do not have precise physiological correlates. Compartmental models developed to date also do not simulate changes in bone metabolism, tissue volumes, blood flow rates, and enzyme activities associated with pregnancy, adverse nutritional states, aging, or osteoporotic diseases. Therefore, extrapolation of classical compartmental model simulations... [Pg.233]

Systems to study the role of intestinal oxidative metabolism (CYP3A4) have been developed and appear to have adequate enzyme activity levels. Although there appears to be a relatively limited need for additional system development in this area, there is still a fundamental question as to whether any synergistic interplay exists between metabolic enzymes and transporters (i.e., does the presence of an efflux transporter influence the extent of metabolism ) and co-expression of CYP3A4 and transporters provides a pivotal experimental model. [Pg.334]


See other pages where Enzymes activity limitation is mentioned: [Pg.665]    [Pg.190]    [Pg.836]    [Pg.25]    [Pg.259]    [Pg.665]    [Pg.190]    [Pg.836]    [Pg.25]    [Pg.259]    [Pg.287]    [Pg.301]    [Pg.21]    [Pg.811]    [Pg.91]    [Pg.262]    [Pg.100]    [Pg.107]    [Pg.543]    [Pg.72]    [Pg.73]    [Pg.76]    [Pg.189]    [Pg.168]    [Pg.97]    [Pg.118]    [Pg.872]    [Pg.603]    [Pg.59]    [Pg.25]    [Pg.55]    [Pg.97]    [Pg.107]    [Pg.196]    [Pg.208]    [Pg.212]    [Pg.33]    [Pg.131]    [Pg.94]    [Pg.174]    [Pg.263]    [Pg.209]    [Pg.133]    [Pg.194]    [Pg.199]   
See also in sourсe #XX -- [ Pg.1400 ]




SEARCH



© 2024 chempedia.info