Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cytochrome solubility

Mole Oj per mole linolenic Linolenic C in polymer, mole linolenic per mole cytochrome Solubility % original... [Pg.500]

No region of the cytochrome penetrates the membrane nevertheless, the cytochrome subunit is an integral part of this reaction center complex, held through protein-protein interactions similar to those in soluble globular multisubunit proteins. The protein-protein interactions that bind cytochrome in the reaction center of Rhodopseudomonas viridis are strong enough to survive the purification procedure. However, when the reaction center of Rhodohacter sphaeroides is isolated, the cytochrome is lost, even though the structures of the L, M, and H subunits are very similar in the two species. [Pg.236]

The metabolism of foreign compounds (xenobiotics) often takes place in two consecutive reactions, classically referred to as phases one and two. Phase I is a functionalization of the lipophilic compound that can be used to attach a conjugate in Phase II. The conjugated product is usually sufficiently water-soluble to be excretable into the urine. The most important biotransformations of Phase I are aromatic and aliphatic hydroxylations catalyzed by cytochromes P450. Other Phase I enzymes are for example epoxide hydrolases or carboxylesterases. Typical Phase II enzymes are UDP-glucuronosyltrans-ferases, sulfotransferases, N-acetyltransferases and methyltransferases e.g. thiopurin S-methyltransferase. [Pg.450]

Heme (C34H3204N4Fe) represents an iron-porphyrin complex that has a protoporphyrin nucleus. Many important proteins contain heme as a prosthetic group. Hemoglobin is the quantitatively most important hemoprotein. Others are cytochromes (present in the mitochondria and the endoplasmic reticulum), catalase and peroxidase (that react with hydrogen peroxide), soluble guanylyl cyclase (that converts guanosine triphosphate, GTP, to the signaling molecule 3, 5 -cyclic GMP) and NO synthases. [Pg.581]

Mitochondrial permeability transition involves the opening of a larger channel in the inner mitochondrial membrane leading to free radical generation, release of calcium into the cytosol and caspase activation. These alterations in mitochondrial permeability lead eventually to disruption of the respiratory chain and dqDletion of ATP. This in turn leads to release of soluble intramito-chondrial membrane proteins such as cytochrome C and apoptosis-inducing factor, which results in apoptosis. [Pg.776]

Rieske proteins are constituents of the be complexes that are hydro-quinone-oxidizing multisubunit membrane proteins. All be complexes, that is, bci complexes in mitochondria and bacteria, b f complexes in chloroplasts, and corresponding complexes in menaquinone-oxidizing bacteria, contain three subunits cytochrome b (cytochrome 6e in b f complexes), cytochrome Ci (cytochrome f in b(,f complexes), and the Rieske iron sulfur protein. Cytochrome 6 is a membrane protein, whereas the Rieske protein, cytochrome Ci, and cytochrome f consist of water-soluble catalytic domains that are bound to cytochrome b through a membrane anchor. In Rieske proteins, the membrane anchor can be identified as an N-terminal hydrophobic sequence (13). [Pg.86]

In be complexes bci complexes of mitochondria and bacteria and b f complexes of chloroplasts), the catalytic domain of the Rieske protein corresponding to the isolated water-soluble fragments that have been crystallized is anchored to the rest of the complex (in particular, cytochrome b) by a long (37 residues in bovine heart bci complex) transmembrane helix acting as a membrane anchor (41, 42). The great length of the transmembrane helix is due to the fact that the helix stretches across the bci complex dimer and that the catalytic domain of the Rieske protein is swapped between the monomers, that is, the transmembrane helix interacts with one monomer and the catalytic domain with the other monomer. The connection between the membrane anchor and the catalytic domain is formed by a 12-residue flexible linker that allows for movement of the catalytic domain during the turnover of the enzyme (Fig. 8a see Section VII). Three different positional states of the catalytic domain of the Rieske protein have been observed in different crystal forms (Fig. 8b) (41, 42) ... [Pg.107]

Fig. 8. (a) Structure of the full-length Rieske protein from bovine heart mitochondrial bci complex. The catalytic domain is connected to the transmembrane helix by a flexible linker, (b) Superposition of the three positional states of the catalytic domain of the Rieske protein observed in different crystal forms. The ci state is shown in white, the intermediate state in gray, and the b state in black. Cytochrome b consists of eight transmembrane helices and contains two heme centers, heme and Sh-Cytochrome c i has a water-soluble catalytic domain containing heme c i and is anchored by a C-terminal transmembrane helix. The heme groups are shown as wireframes, the iron atoms as well as the Rieske cluster in the three states as space-filling representations. [Pg.108]

When the second-site revertants were segregated from the original mutations, the bci complexes carrying a single mutation in the linker region of the Rieske protein had steady-state activities of 70-100% of wild-type levels and cytochrome b reduction rates that were approximately half that of the wild type. In all these mutants, the redox potential of the Rieske cluster was increased by about 70 mV compared to the wild type (51). Since the mutations are in residues that are in the flexible linker, at least 27 A away from the cluster, it is extremely unlikely that any of the mutations would have a direct effect on the redox potential of the cluster that would be observed in the water-soluble fragments. However, the mutations in the flexible linker will affect the mobility of the Rieske protein. Therefore, the effect of the mutations described is due to the interaction between the positional state of the Rieske protein and its electrochemical properties (i.e., the redox potential of the cluster). [Pg.112]

The use of direct electrochemical methods (cyclic voltammetry Pig. 17) has enabled us to measure the thermodynamic parameters of isolated water-soluble fragments of the Rieske proteins of various bci complexes (Table XII)). (55, 92). The values determined for the standard reaction entropy, AS°, for both the mitochondrial and the bacterial Rieske fragments are similar to values obtained for water-soluble cytochromes they are more negative than values measured for other electron transfer proteins (93). Large negative values of AS° have been correlated with a less exposed metal site (93). However, this is opposite to what is observed in Rieske proteins, since the cluster appears to be less exposed in Rieske-type ferredoxins that show less negative values of AS° (see Section V,B). [Pg.138]

The microsomal fraction consists mainly of vesicles (microsomes) derived from the endoplasmic reticulum (smooth and rough). It contains cytochrome P450 and NADPH/cytochrome P450 reductase (collectively the microsomal monooxygenase system), carboxylesterases, A-esterases, epoxide hydrolases, glucuronyl transferases, and other enzymes that metabolize xenobiotics. The 105,000 g supernatant contains soluble enzymes such as glutathione-5-trans-ferases, sulfotransferases, and certain esterases. The 11,000 g supernatant contains all of the types of enzyme listed earlier. [Pg.46]

Cosme J, Johnson EF. Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. /FtoZ Chem 2000 275 2545-53. [Pg.460]

Functionally and strucmrally, the components of the respiratory chain are present in the inner mitochondrial membrane as four protein-lipid respiratory chain complexes that span the membrane. Cytochrome c is the only soluble cytochrome and, together with Q, seems to be a more mobile component of the respiratory chain connecting the fixed complexes (Figures 12-7 and 12-8). [Pg.93]

Figure26-2. Biosynthesis of squalene, ubiquinone, dolichol, and other polyisoprene derivatives. (HMG, 3-hydroxy-3-methylglutaryl x, cytokinin.) A farnesyl residue is present in heme a of cytochrome oxidase. The carbon marked with asterisk becomes C or C,2 in squalene. Squalene synthetase is a microsomal enzyme all other enzymes indicated are soluble cytosolic proteins, and some are found in peroxisomes. Figure26-2. Biosynthesis of squalene, ubiquinone, dolichol, and other polyisoprene derivatives. (HMG, 3-hydroxy-3-methylglutaryl x, cytokinin.) A farnesyl residue is present in heme a of cytochrome oxidase. The carbon marked with asterisk becomes C or C,2 in squalene. Squalene synthetase is a microsomal enzyme all other enzymes indicated are soluble cytosolic proteins, and some are found in peroxisomes.
Xenobiotics are metabolized in two phases. The major reaction of phase 1 is hydroxylation catalyzed by a variety of monooxygenases, also known as the cytochrome P450s. In phase 2, the hydroxylated species are conjugated with a variety of hydrophihc compounds such as glucuronic acid, sulfate, or glutathione. The combined operation of these two phases renders lipophilic compounds into water-soluble compounds that can be ehminated from the body. [Pg.632]

Analysis of reaction mixtures for 1-propanol and 2-propanol following incubation of NDPA with various rat liver fractions in the presence of an NADPH-generating system is shown in Table I ( ). Presence of microsomes leads to production of both alcohols, but there was no propanol formed with either the soluble enzyme fraction or with microsomes incubated with SKF-525A (an inhibitor of cytochrome P450-dependent oxidations). The combined yield of propanols from 280 ymoles of NDPA was 6.1 ymoles and 28.5 ymoles for the microsomal pellet and the 9000 g supernatant respectively. The difference in the ratio of 1- to 2-propanol in the two rat liver fractions may be due to differences in the chemical composition of the reaction mixtures (2) Subsequent experiments have shown that these ratios are quite reproducible. For comparison, Table I also shows formation of propanols following base catalyzed decomposition of N-propyl-N-nitrosourea. As expected (10,11), both propanol isomers were formed, the total yield in this case being almost quantitative. [Pg.41]

Katagiri M, BN Ganguli, IC Gunsalus (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243 3543-3546. [Pg.140]

The reductase in Geobacter sulfurreducens is located in the outer membrane and a soluble Fe(III) reductase has been characterized from cells grown anaerobically with acetate as electron donor and Fe(III) citrate or fumarate as electron acceptor (Kaufmann and Lovley 2001). The enzyme contained Fe, acid-labile S, and FAD. An extracellular c-type cytochrome is distributed in the membranes, the periplasm, and the medium, and functions as a reductase for electron transfer to insoluble iron hydroxides, sulfur, or manganese dioxide (Seeliger et al. 1998). [Pg.165]


See other pages where Cytochrome solubility is mentioned: [Pg.40]    [Pg.202]    [Pg.202]    [Pg.43]    [Pg.54]    [Pg.688]    [Pg.691]    [Pg.719]    [Pg.21]    [Pg.350]    [Pg.321]    [Pg.961]    [Pg.63]    [Pg.127]    [Pg.11]    [Pg.84]    [Pg.88]    [Pg.107]    [Pg.143]    [Pg.337]    [Pg.349]    [Pg.140]    [Pg.9]    [Pg.41]    [Pg.71]    [Pg.131]    [Pg.166]    [Pg.172]    [Pg.367]    [Pg.89]    [Pg.25]    [Pg.53]    [Pg.153]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Soluble Cytochromes as Electron-transfer Mediators

© 2024 chempedia.info