Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme inhibition/inhibitors reversible

Mechanisms of CYP inhibition can be broadly divided into two categories reversible inhibition and mechanism-based inactivation. Depending on the mode of interaction between CYP enzymes and inhibitors, reversible CYP inhibition is further characterized as competitive, noncompetitive, uncompetitive, and mixed (Ito et al., 1998b). Evaluation of reversible inhibition of CYP reactions is often conducted under conditions where M-M kinetics is obeyed. Based on the scheme illustrated in Fig. 5.1, various types of reversible inhibition are summarized in Table 5.1. Figure 5.1 depicts a simple substrate-enzyme complex during catalysis. In the presence of a reversible inhibitor, such a complex can be disrupted leading to enzyme inhibition. [Pg.114]

Since enzyme inhibition involves reversible mechanisms, CLi , (ij may vary with regard to the type and concentration of inhibitor. The concentrations of an inhibitor (or drug) that are relevant to clinical application can be approached for the prediction in the in vivo situation. In practice, a ratio in AUC, hepatic clearance (CLhept), plasma concentration at steady state (Css), or intrinsic clearance (CLjnt) caused by metabolism-based DDIs is commonly used to assess the degree of metabolism inhibition in vivo (Eq. 16.7). If a drug is eliminated due to both metabolism and renal excretion, the fraction of the drug metabolized by the inhibited enzyme (fj ) should be introduced to the prediction. With inclusion of fj, the ratio change in AUC in the presence and absence of an inhibitor can be expressed for competitive and noncompetitive (Eq. 16.8). [Pg.534]

The three reversible mechanisms for enzyme inhibition are distinguished by observing how changing the inhibitor s concentration affects the relationship between the rate of reaction and the concentration of substrate. As shown in figure 13.13, when kinetic data are displayed as a Lineweaver-Burk plot, it is possible to determine which mechanism is in effect. [Pg.639]

Reversible inhibition is characterized by an equiUbrium between enzyme and inhibitor. Many reversible inhibitors are substrate analogues, and bear a close relationship to the normal substrate. When the inhibitor and the substrate compete for the same site on the enzyme, the inhibition is called competitive inhibition. In addition to the reaction described in equation 1, the competing reaction described in equation 3 proceeds when a competitive inhibitor I is added to the reaction solution. [Pg.288]

Figure 5.8 Dilution scheme for testing the reversibility of an enzyme inhibition The enzyme and inhibitor are pre-incubated at a concentration of enzyme equal to 100-fold that needed for activity assay, and at a concentration of inhibitor equal to 10-fold the IC50 value. The sample is then rapidly diluted 100-fold into an assay solution. The inhibitor concentration thus goes from 10-fold above die IC50 (corresponding to 91% inhibition) to 10-fold below the IC50 (corresponding to 9% inhibition). Figure 5.8 Dilution scheme for testing the reversibility of an enzyme inhibition The enzyme and inhibitor are pre-incubated at a concentration of enzyme equal to 100-fold that needed for activity assay, and at a concentration of inhibitor equal to 10-fold the IC50 value. The sample is then rapidly diluted 100-fold into an assay solution. The inhibitor concentration thus goes from 10-fold above die IC50 (corresponding to 91% inhibition) to 10-fold below the IC50 (corresponding to 9% inhibition).
Until now our discussions of enzyme inhibition have dealt with compounds that interact with binding pockets on the enzyme molecule through reversible forces. Hence inhibition by these compounds is always reversed by dissociation of the inhibitor from the binary enzyme-inhibitor complex. Even for very tight binding inhibitors, the interactions that stabilize the enzyme-inhibitor complex are mediated by reversible forces, and therefore the El complex has some, nonzero rate of dissociation—even if this rate is too slow to be experimentally measured. In this chapter we turn our attention to compounds that interact with an enzyme molecule in such a way as to permanendy ablate enzyme function. We refer to such compounds as enzyme inactivators to stress the mechanistic distinctions between these molecules and reversible enzyme inhibitors. [Pg.214]

Up to this point, GIPF expressions have been formulated for only one type of biological activity - the inhibition of reverse transcriptase (RT), the enzyme that promotes the reverse transcription of genomic RNA into double-stranded DNA, a key step in the replication of the human immunodeficiency virus, HIV [82, 87]. Analytical representations were obtained for the anti-HIV potencies of three families of RT inhibitors the correlation coefficients are between 0.930 and 0.952. We are currently investigating the effects of applying the GIPF approach to certain portions of the molecules rather than their entireties. This might reveal the source of the activity, or alternatively, indicate it to be delocalized. [Pg.249]

Although substrates may enhance or inhibit their own conversion, as noted in Section 10.4.1, other species may also affect enzyme activity. Inhibitors are compounds that decrease observable enzyme activity, and activators increase activity. The combination of an inhibitor or activator with an enzyme may be irreversible, reversible, or partially... [Pg.272]

The mechanisms which underlie enzyme inhibition are described more fully in Chapter 3. Suffice to say here that reversible inhibitors which block the active site are called competitive whilst those which prevent release of the product of the reaction are non-competitive. By preventing the true substrate accessing the active site, competitive inhibitors increase Km (designated by or K PParent). A non-competitive inhibitor decreases V mprime symbol ( ) here to imply physiological as it does for energy change. [Pg.42]

Binding of a reversible inhibitor to an enzyme is rapidly reversible and thus bound and unbound enzymes are in equilibrium. Binding of the inhibitor can be to the active site, or to a cofactor, or to some other site on the protein leading to allosteric inhibition of enzyme activity. The degree of inhibition caused by a reversible inhibitor is not time-dependent the final level of inhibition is reached almost instantaneously, on addition of inhibitor to an enzyme or enzyme-substrate mixture. [Pg.114]

Antibodies against the virus but also amantadine and derivatives, interfere with host cell penetration. There are nucleoside analogues such as aciclovir and ganciclovir, which interfere with DNA synthesis, especially of herpes viruses. Others like zidovudine and didanosine, inhibit reverse transcriptase of retroviruses. Recently a number of non-nucleoside reverse transcriptase inhibitors was developed for the treatment of HIV infections. Foscarnet, a pyrophosphate analogue, inhibits both reverse transcriptase and DNA synthesis. Protease inhibitors, also developed for the treatment of HIV infections, are active during the fifth step of virus replication. They prevent viral replication by inhibiting the activity of HIV-1 protease, an enzyme used by the viruses to cleave nascent proteins for final assembly of new vi-rons. [Pg.419]

The NNRTIs inhibit viral reverse transcriptase by binding adjacent to its active site and inducing a conformational change that causes the enzyme s inactivation. When combined with NRTIs or protease inhibitors,... [Pg.588]

Di- and trifluoromethyl ketones inhibit a great number of esterases and proteases with often very high inhibition constants (cf. Chapter 7). Although the fluorinated ketone is covalently bonded to the nucleophilic residue of the enzyme, the inhibition is reversible, as the inhibitor could be displaced by another nucleophile. The covalent nature of the interactions as well as the tetrahedral structure of the adducts have been demonstrated by kinetic studies, by NMR experiments, and by the X-ray diffraction of the enzyme-substrate complexes. ... [Pg.92]

Enzyme inhibitors can be designed through different ways taking into account the effects of fluorine substitution on the behavior of a substrate toward the enzyme. Many fluorinated inhibitors (reversible or irreversible) have been studied. In this chapter, we only consider cases in which fluorine atoms play a determinant role in the inhibition and which are of importance in dmg discovery. We successively focus on the following ... [Pg.223]

A number of conformationally restricted fluorinated inhibitors have been synthesized and evaluated. These smdies show that (1) subtle conformational differences of the substrates affect the inhibition (potency, reversible or irreversible character) (Figure 7.50), (2) a third inhibition process involving an aromatization mechanism could take place (Figure 7.51). When the Michael addition and enamine pathways lead to a covalently modified active site residue, the aromatization pathway produces a modified coenzyme able to produce a tight binding complex with the enzyme, responsible for the inhibition (Figure 7.51). ... [Pg.258]

Another important characteristic of M AOIs is the production of reversible versus irreversible enzyme inhibition. An irreversible inhibitor permanently disables the enzyme. This means that MAO must be resynthesized, in the absence of the drug, before the activity of the enzyme can be reestablished. Resynthesis of the enzyme may take up to 2 weeks. For this reason, an interval of 10-14 days is required after discontinuing irreversible inhibitors and before instituting treatment with other antidepressants or permitting the use of contraindicated drugs or the consumption of contraindicated foods. On the other hand, a reversible inhibitor can move away from the active site of the enzyme, making the enzyme available to metabo-hze other substances. The reversibility and selectivity of the currently available MAOIs are summarized in Table 2-4. [Pg.47]

The hormone-hke peptide incretin stimulates the release of insuhn by a feedback process that involves cleaving the molecule to an inactive form. The protease enzyme dipeptidal peptidase (DPP) in turn cleaves incretin, in effect inactivating this enzyme. Inhibition of DPP consequently extends the action of incretin. This inhibition thus prevents the increased levels of blood glucose that mark diabetes. The protease inhibitor vidagliptin, which is modeled in part on the terminal sequence in DPP, has been found to sustain levels of insulin in Type II diabetics. The inhibition is apparently reversible in spite of the presence in the structure of the relatively reactive a-aminonitrile function. Construction of one intermediate in the convergent synthesis comprises the reaction of amino adamantamine (21-1) with a mixture of nitric and... [Pg.251]

Reversible inhibition of an enzyme is competitive, uncompetitive, or mixed. Competitive inhibitors compete with substrate by binding reversibly to the active site, but they are not transformed by the enzyme. Uncompetitive inhibitors bind only to the ES complex, at a site distinct from the active site. Mixed inhibitors bind to either E or ES, again at a site distinct from the active site. In irreversible inhibition an inhibitor binds permanently to an active site by forming a covalent bond or a veiy stable noncovalent interaction. [Pg.213]

Any substance that can diminish the velocity of an enzyme-catalyzed reaction is called an inhibitor. Reversible inhibitors bind to enzymes through noncovalent bonds. Dilution of the enzyme-inhibitor complex results in dissociation of the reversibly bound inhibitor, and recovery of enzyme activity. Irreversible inhibition occurs when an inhibited enzyme does not regain activity on dilution of the enzyme-inhibitor complex. The two most commonly encountered types of inhibition are competitive and noncompetitive. [Pg.60]

As well as being irreversibly inactivated by heat or chemical reagents, enzymes may be reversibly inhibited by the noncovalent binding of inhibitors. There are four main types of inhibition. [Pg.67]

The rate of inactivation is inhibited by reversible inhibitors or substrates of the enzyme. [Pg.150]

The process of reversible inhibition is described by an equilibrium interaction between enzyme and inhibitor. Most inhibition processes can be classified as competitive or noncompetitive, depending on how the inhibitor impairs enzyme action. A competitive inhibitor is usually similar in structure to the substrate and is capable of reversible binding to the enzyme active site. In contrast to the substrate molecule, the inhibitor molecule cannot undergo chemical transformation to a product however, it does interfere with substrate binding. A noncompetitive inhibitor does not bind in the active site of an enzyme but binds at some other region of the enzyme molecule. Upon binding of the noncompetitive inhibitor, the enzyme is reversibly converted to a nonfunctional conformational state, and the substrate, which is fully capable of binding to the active site, is not converted to product. [Pg.283]


See other pages where Enzyme inhibition/inhibitors reversible is mentioned: [Pg.497]    [Pg.639]    [Pg.319]    [Pg.320]    [Pg.314]    [Pg.48]    [Pg.88]    [Pg.127]    [Pg.138]    [Pg.145]    [Pg.173]    [Pg.108]    [Pg.221]    [Pg.67]    [Pg.215]    [Pg.114]    [Pg.127]    [Pg.127]    [Pg.130]    [Pg.85]    [Pg.575]    [Pg.5]    [Pg.155]    [Pg.48]    [Pg.183]    [Pg.209]    [Pg.510]   
See also in sourсe #XX -- [ Pg.10 , Pg.273 ]




SEARCH



Enzyme inhibition reversible

Enzyme inhibitor/inhibition

Enzyme inhibitors

Enzyme inhibitors reversible

Enzymes enzyme inhibitor

Enzymes inhibition

Enzymes reversibility

INHIBITION INHIBITOR

REVERSION INHIBITOR

Reverse inhibitor

Reversible inhibition

Reversible inhibitors

© 2024 chempedia.info