Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme activation single-substrate reaction

The other extreme is when a compound binds only to the E S complex but not to the free enzyme, in which case uncompetitive inhibition occurs (Scheme 2). Although it is rare in single substrate reactions, it is common in multiple substrate systems. An inhibitor of a two-substrate enzyme that is competitive against one of the substrates often is found to give uncompetitive inhibition when the other substrate is varied. The inhibitor binds at the active site but only prevents the binding of one of the substrates. [Pg.439]

Entries 7, 8, and 10 describe so-called Idnetically controlled syntheses starting from activated substrates such as ethyl esters or lactose. In two reaction systems it was possible to demonstrate that ionic liquids can also be useful in a thermodynamically controlled synthesis starting with the single components (Entry 11) [39]. In both cases, as with the results presented in entry 6, the ionic liquids were used with addition of less than 1 % water, necessary to maintain the enzyme activity. The yields observed were similar or better than those obtained with conventional organic solvents. [Pg.342]

Attempts have been made to apply the structure-activity concept (Hansch and Leo 1995) to environmental problems, and this has been successfully applied to the rates of hydrolysis of carbamate pesticides (Wolfe et al. 1978), and of esters of chlorinated carboxylic acids (Paris et al. 1984). This has been extended to correlating rates of biotransformation with the structure of the substrates and has been illustrated with a number of single-stage reactions. Clearly, this approach can be refined with the increased understanding of the structure and function of the relevant degradative enzymes. Some examples illustrate the application of this procedure ... [Pg.219]

In the presence of sucrose alone as the single substrate, initial reaction rates follow Michaelis-Menten kinetics up to 200 mM sucrose concentration, but the enzyme is inhibited by higher concentrations of substrate.30 The inhibitor constant for sucrose is 730 mM. This inhibition can be overcome by the addition of acceptors.31,32 The enzyme activity is significantly enhanced, and stabilized, by the presence of dextran, and by calcium ions. [Pg.106]

Substrate concentration is yet another variable that must be clearly defined. The hyperbolic relationship between substrate concentration ([S ) and reaction velocity, for simple enzyme-based systems, is well known (Figure C1.1.1). At very low substrate concentrations ([S] ATm), there is a linear first-order dependence of reaction velocity on substrate concentration. At very high substrate concentrations ([S] A m), the reaction velocity is essentially independent of substrate concentration. Reaction velocities at intermediate substrate concentrations ([S] A"m) are mixed-order with respect to the concentration of substrate. If an assay is based on initial velocity measurements, then the defined substrate concentration may fall within any of these ranges and still provide a quantitative estimate of total enzyme activity (see Equation Cl. 1.5). The essential point is that a single substrate concentration must be used for all calibration and test-sample assays. In most cases, assays are designed such that [S] A m, where small deviations in substrate concentration will have a minimal effect on reaction rate, and where accurate initial velocity measurements are typically easier to obtain. [Pg.332]

In single displacement reactions both substrates A and B simultaneously must be present on the active site of the enzyme to yield a ternary complex EAB in order that the reaction may proceed. Single displacement reactions take place in two forms, random and ordered, and they are distinguished by the way the two substrates bind to the enzyme. [Pg.292]

Multidomain proteins tend to occur more frequently in eukaryotes than in prokaryotes. Often the eukaryotic counterpart to a set of individual prokaryotic enzymes that catalyze successive reactions is a single, multidomain protein. The theoretical advantages proposed for such an arrangement include (1) a geometry for the direct transfer of substrates from one active site to another, in a process known as substrate channeling, in order to increase the overall flux of the pathway, (2) the protection of intermediates that may be unstable in aqueous environments or may be acted on inappropriately by other enzymes, (3) the facilitation of interactions between domains for purposes of allosteric regulatory functions, and (4) the establishment of a fixed stoichiometric ratio of the... [Pg.33]

In 1913, Michaelis and Men ten presented a general theory for enzyme kinetics, extended later by Briggs and Haldane, which accounts for the velocity curve shown in Figure 5.5. This theory for reactions catalyzed by enzymes having a single substrate assumes that the substrate S binds to the active site of the enzyme E to form the enzyme-substrate complex ES, which yields the product P and the free enzyme E ... [Pg.97]

The bacterial enzyme chorismate mutase-prephenate dehydrogenase is peculiar because it is a single protein unit with two catalytic activities. It catalyzes the sequential reactions of mutation of chorismate to prephenate and then the reaction that leads to the formation of phenylalanine and tyrosine, through oxidation of prephenate. The first of these reactions is interesting because it is one of the few strictly single-substrate enzymatic reactions it entails... [Pg.244]


See other pages where Enzyme activation single-substrate reaction is mentioned: [Pg.38]    [Pg.45]    [Pg.424]    [Pg.17]    [Pg.299]    [Pg.103]    [Pg.157]    [Pg.101]    [Pg.321]    [Pg.504]    [Pg.179]    [Pg.197]    [Pg.275]    [Pg.11]    [Pg.25]    [Pg.113]    [Pg.963]    [Pg.272]    [Pg.96]    [Pg.128]    [Pg.709]    [Pg.352]    [Pg.487]    [Pg.343]    [Pg.530]    [Pg.170]    [Pg.355]    [Pg.13]    [Pg.196]    [Pg.282]    [Pg.321]    [Pg.652]    [Pg.275]    [Pg.153]    [Pg.209]    [Pg.46]    [Pg.70]    [Pg.391]    [Pg.136]    [Pg.167]    [Pg.310]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Enzymes enzyme-substrate reactions

Reaction single reactions

Single Substrate

Single reactions

Single substrate reactions

Substrate activation

Substrate reaction

Substrates enzymes

© 2024 chempedia.info