Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate generation reactions

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

These results were confirmed by later studies, which proved that the lithium enolate, generated from the reaction of 163b with LDA, reacted with 2-chloroben-zaldehyde to give the corresponding 5-hydroxyfuranone 167 (R= o-Cl—C6H4) (96H191). [Pg.137]

The chlorotitanium enolate, generated by treatment of (S )-l-tm-butyldimethylsiloxy-l-cyclohexyl-2-butanone with titanium(iv) chloride and diisopropylethylamine, provides the syn-product upon reaction with benzaldehyde. The diastereoselectivity of 99 1 is defined as the ratio of the major isomer to the sum of all other isomers47bc. [Pg.466]

A more effective control of both simple diastereoselectivity and induced stereoselectivity is provided by the titanium enolate generated in situ by transmetalation of deprotonated 2,6-dimethylphenyl propanoate with chloro(cyclopentadienyl)bis(l,2 5,6-di-0-isopropylidene-a-D-glucofuranos-3-0-yl)titanium. Reaction of this titanium enolate with aldehydes yields predominantly the. yyw-adducts (syn/anti 89 11 to 97 3). The chemical yields of the adducts are 24 87% while the n-u-products have 93 to 98% ee62. [Pg.475]

Ester enolates which contain the chiral information in the acid moiety have been widely used in alkylations (see Section D.1.1.1,3.) as well as in additions to carbon-nitrogen double bonds (sec Section D.1.4.2.). Below are examples of the reaction of this type of enolate with aldehydes720. The (Z)-enolate generated from benzyl cinnamate (benzyl 3-phenylpropcnoate) and lithium (dimethylphenylsilyl)cuprate affords the /h/-carboxylic acid on addition to acetaldehyde and subsequent hydrogenolysis, The diastereoselectivity is 90 10. [Pg.486]

Another very important method for specific enolate generation is the conjugate addition of organometallic reagents to enones. This reaction, which not only generates a specific enolate, but also adds a carbon substituent, is discussed in Section 8.1.2.3. [Pg.17]

In the presence of a very strong base, such as an alkyllithium, sodium or potassium hydride, sodium or potassium amide, or LDA, 1,3-dicarbonyl compounds can be converted to their dianions by two sequential deprotonations.79 For example, reaction of benzoylacetone with sodium amide leads first to the enolate generated by deprotonation at the more acidic methylene group between the two carbonyl groups. A second equivalent of base deprotonates the benzyl methylene group to give a dienediolate. [Pg.36]

Among the most useful carbonyl derivatives are (V-acyloxazolidinones, and as we shall see in Section 2.3.4, they provide facial selectivity in aldol addition reactions. l,3-Thiazoline-2-thiones constitute another useful type of chiral auxiliary, and they can be used in conjunction with Bu2B03SCF3,44 Sn(03SCF3)2,45 or TiCl446 for generation of enolates. The stereoselectivity of the reactions is consistent with formation of a Z-enolate and reaction through a cyclic TS. [Pg.81]

As noted in Chapter 1, this is one of the best methods for generating a specific enolate of a ketone. The enolate generated by conjugate reduction can undergo the characteristic alkylation and addition reactions that are discussed in Chapters 1 and 2. When this is the objective of the reduction, it is important to use only one equivalent of the proton donor. Ammonia, being a weaker acid than an aliphatic ketone, does... [Pg.435]

The chiral boron enolates generated from /V-acyl oxazolidones such as 7 and 8 (which were named Evans auxiliaries and have been extensively used in the a-alkylation reactions discussed in Chapter 2) have proved to be among the most popular boron enolates due to the ease of their preparation, removal, and recycling and to their excellent stereoselectivity.8... [Pg.139]

The next step to erythronolide A is the coupling of fragments A and B. Asymmetric aldol reaction of aldehyde 2 with a lithium enolate generated from... [Pg.399]

Mukaiyama Michael reactions of alkylidene malonates and enolsilanes have also been examined (244). The stoichiometric reaction between enolsilane (342a) and alkylidene malonate (383) proceeds in high selectivity however, catalyst turnover is not observed under these conditions. The addition of HFIP effectively promotes catalyst turnover, presumably by protonation and silyl transfer from the putative copper malonyl enolate generated in this reaction. The reaction proved general for bulky P-substituents (aryl, branched alkyl), Eq. 209. [Pg.124]

Murai and coworkers reported on operationally simple aldol reactions with lithium enolates generated from carbonylation of silylmethyl lithium species [57]. Upon 1,2-silicon shift, a-silyl acyllithium species can be stereo-selectively converted to (E) lithium enolates that undergo addition to aldehydes to give /3-hydroxy acylsilanes (Scheme 14). [Pg.223]

Stereochemistry of the Enolates Generated by the Reaction of Ketones and Diethylboryl Pivalate-EtsB (eq. [40]) (61)... [Pg.42]

A stereoselective intramolecular aldol reaction of thiazolidinecarboxylate (39) proceeds with retention of configuration to give fused heterocycles (40a,b separable) and (41), the product of a retroaldol-acylation reaction. The selectivity is suggested to be directed by self-induced axial chirality, in which the enolate generated in the reaction has a stereochemical memory, being generated in an axially chiral form (42). The retroaldol step also exemplifies a stereoretentive protonation of an enolate. [Pg.11]

Polar protic solvents also possess a pronounced ability to separate ion pairs but are less favorable as solvents for enolate alkylation reactions because they coordinate to both the metal cation and the enolate ion. Solvation of the enolate anion occurs through hydrogen bonding. The solvated enolate is relatively less reactive because the hydrogen-bonded enolate must be disrupted during alkylation. Enolates generated in polar protic solvents such as water, alcohols, or ammonia are therefore less reactive than the same enolate in a polar aprotic solvent such as DMSO. [Pg.22]

Scheme 8.2. Tandem Reactions Involving Alkylation of Enolates Generated by Conjugate... Scheme 8.2. Tandem Reactions Involving Alkylation of Enolates Generated by Conjugate...
Enzymes with oxyanion holes are now known to catalyze a wide range of reactions with substrates that have a carbonyl moiety. The examples discussed in this chapter include thioesters, oxygen esters, peptides, and ketones (Figure 4.1). Two classes of high-energy intermediates with oxyanions are generated in these reactions (Table 4.3), a tetrahedral intermediate and an enolate. These reactions are... [Pg.49]

The enolate generated by reaction of lactone 88 with lithium diisopropylamide (LDA) is quenched with an excess of methyl iodide to give methyl lactone 89 in excellent yield. As expected, the electrophilic attack is stereoselective for the less sterically hindered convex face of the lactone enolate, giving the product with the desired 7iJ-stereochemistry with greater than 95 5 selectivity (Equation 22) <1997TL3817>. [Pg.1152]

Seebach and Naef1961 generated chiral enolates with asymmetric induction from a-heterosubstituted carboxylic acids. Reactions of these enolates with alkyl halides were found to be highly diastereoselective. Thus, the overall enantioselective a-alkyla-tion of chiral, non-racemic a-heterosubstituted carboxylic acids was realized. No external chiral auxiliary was necessary in order to produce the a-alkylated target molecules. Thus, (S)-proline was refluxed in a pentane solution of pivalaldehyde in the presence of an acid catalyst, with azeotropic removal of water. (197) was isolated as a single diastereomer by distillation. The enolate generated from (197) was allylated and produced (198) with ad.s. value >98 %. The substitution (197) ->(198) probably takes place with retention of configuration 196>. [Pg.220]

The zinc-enolate cyclizations are not restricted to a-aminoesters as /3-aminoesters have also been successfully involved in such reactions275. The preformed lithium enolate generated by treatment of the /J-arninoester 423 with LDA had to be added dropwise to an ethereal solution of ZnBr2 in order to avoid a competing /3-elimination reaction induced by the zinc enolate. this reverse addition protocol was respected, a smooth carbocyclization reaction occurred and provided, after hydrolysis, the substituted 3-carbomethoxypyrrolidine 424 as a 87/13 mixture of diastereomers (equation 183). [Pg.963]

The reaction with optically active hydrazones provided an access to optically active ketones. The butylzinc aza-enolate generated from the hydrazone 449 (derived from 4-heptanone and (,S )-1 -amino-2-(methoxymethyl)pyrrolidine (SAMP)) reacted with the cyclopropenone ketal 78 and led to 450 after hydrolysis. The reaction proceeded with 100% of 1,2-diastereoselectivity at the newly formed carbon—carbon bond (mutual diastereo-selection) and 78% of substrate-induced diastereoselectivity (with respect to the chiral induction from the SAMP hydrazone). The latter level of diastereoselection was improved to 87% by the use of the ZnCl enolate derived from 449, at the expense of a slight decrease in yield. Finally, the resulting cyclopropanone ketal 450 could be transformed to the polyfunctional open-chain dicarbonyl compound 451 by removal of the hydrazone moiety and oxymercuration of the three-membered ring (equation 192). [Pg.968]

By contrast with the above examples which involve activated olefins, the addition of zinc enolates to unactivated alkenes is much more difficult to achieve. Although ethylene seems to be an acceptable partner for such additions, the reactions have to be carried out under pressure and require relatively long reaction times. Thus, the butylzinc aza-enolate generated from the SAMP hydrazone of cyclohexanone 452 reacted slowly with ethylene... [Pg.968]


See other pages where Enolate generation reactions is mentioned: [Pg.298]    [Pg.613]    [Pg.147]    [Pg.41]    [Pg.23]    [Pg.18]    [Pg.20]    [Pg.30]    [Pg.1187]    [Pg.273]    [Pg.140]    [Pg.422]    [Pg.78]    [Pg.151]    [Pg.449]    [Pg.226]    [Pg.116]    [Pg.690]    [Pg.283]    [Pg.23]    [Pg.106]    [Pg.410]    [Pg.773]    [Pg.775]    [Pg.480]    [Pg.699]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Enolate generation

Enolates generation

Generation reactions

In Situ Direct Generation of Enolates and Their Asymmetric Aldol Addition Reactions

Keto-enol tautomerization reactions generation

© 2024 chempedia.info