Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy-level fine structure

The static ZFS, which is present in low-symmetry complexes, affects mainly the energy level fine structure. It is described by axial and rhombic components, D and E. Its effects on nuclear relaxation depend on two angles, 9 and cj), defining the position of the nucleus with respect to the ZFS principal tensor axes. Figure 23 shows the dispersion profiles for different values of S, D, E and 9. Many such examples are reported in Chapter 2. [Pg.146]

The key quantities in the traditional Bom-Oppenheimer theory of molecules are the coordinate-dependent electronic energies. They supply the potentials for nuclear motion from which the level fine structure can be predicted. These curves or surfaces need not necessarily be obtained from ab initio theory. The inverse approach is followed in most spectroscopic work in that the potential-energy surfaces or sections thereof are extracted from experiment. Indeed, the structural information contained in the electronic energies provides the most commonly used interface for the comparison between ab initio theory and experiment. Without this key feature of the theory, molecular physics could never have progressed as it has in the past decades. [Pg.706]

Flux measurements were made with thorium, cadmium covered gold, and dysprosium foils to provide buckling data at various neutron energy levels. Fine flux structure was Investigated 1 intracell and thermal activations with dysprosium foils. [Pg.63]

EXELES Extended Electron Energy Loss Fine Structure Thin films Electrons (100-400 keV) Electrons energies 0-30 eV above edge <200 nm 1-100nm Density ol stales ol valence electrons (above Fermi level) 27,32... [Pg.1794]

If the experunental technique has sufficient resolution, and if the molecule is fairly light, the vibronic bands discussed above will be found to have a fine structure due to transitions among rotational levels in the two states. Even when the individual rotational lines caimot be resolved, the overall shape of the vibronic band will be related to the rotational structure and its analysis may help in identifying the vibronic symmetry. The analysis of the band appearance depends on calculation of the rotational energy levels and on the selection rules and relative intensity of different rotational transitions. These both come from the fonn of the rotational wavefunctions and are treated by angnlar momentum theory. It is not possible to do more than mention a simple example here. [Pg.1139]

Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35. Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35.
Appearance potential methods all depend on detecting the threshold of ionization of a shallow core level and the fine structure near the threshold they differ only in the way in which detection is performed. In all of these methods the primary electron energy is ramped upward from near zero to whatever is appropriate for the sample material, while the primary current to the sample is kept constant. As the incident energy is increased, it passes through successive thresholds for ionization of core levels of atoms in the surface. An ionized core level, as discussed earlier, can recombine by emission either of a characteristic X-ray photon or of an Auger electron. [Pg.274]

The photoelectron spectrum of nitrogen (N2) has several peaks, a pattern indicating that electrons can be found in several energy levels in the molecule. Each main group of lines corresponds to the energy of a molecular orbital. The additional "fine structure" on some of the groups of lines is due to the excitation of molecular vibration when an electron is expelled. [Pg.243]

Absorption of X-ray radiation of energy well above the threshold for an X-ray transition will result in the ejection of a photoelectron since the initial unoccupied band stale to which the transition takes place will be above the vacuum level. The Kronig fine structure is due to oscillations induced in the absorption cross-section of the absorbing atom as a result of interference... [Pg.148]

Structural Information from EELS. Besides yielding chemical composition, EELS is also capable of providing structural information on an atomic scale. It has been known (54) for some time that the fine-structure in the energy-loss spectrum close to an ionization edge reflects the energy dependence of the density of electronic states above the Fermi level. [Pg.447]

When an excited molecule also consists of a definite vibrational level as shown in Fig. 5.1(a), there shall be no direct dissociation of molecule and a fine structure in the electronic band spectra of the molecule will be observed. The excess energy, in usual course may be dissipated as heat or may give rise to fluorescence. But the molecule may retain its energy until it has not reacted with another molecule or transfer its energy to another molecule, e.g. decomposition of NOC1 as follows ... [Pg.117]

Intensive effort has been devoted to the optimization of CCP structures for improved fluorescence output of CCP-based FRET assays. The inherent optoelectronic properties of CCPs make PET one of the most detrimental processes for FRET. Before considering the parameters in the Forster equation, it is of primary concern to reduce the probability of PET. As the competition between FRET and PET is mainly determined by the energy level alignment between donor and acceptor, it can be minimized by careful choice of CCP and C. A series of cationic poly(fluorene-co-phenylene) (PFP) derivatives (IBr, 9, 10 and 11, chemical structures in Scheme 8) was synthesized to fine-tune the donor/acceptor energy levels for improved FRET [70]. FI or Tex Red (TR) labeled ssDNAg (5 -ATC TTG ACT ATG TGG GTG CT-3 ) were chosen as the energy acceptor. The emission spectra of IBr, 9, 10 and 11 are similar in shape with emission maxima at 415, 410, 414 and 410 nm, respectively. The overlap between the emission of these polymers and the absorption of FI or TR is thus similar. Their electrochemical properties were determined by cyclic voltammetry experiments. The calculated HOMO and LUMO... [Pg.430]

Kratzer and Loomis as well as Haas (1921) also discussed the isotope effect on the rotational energy levels of a diatomic molecule resulting from the isotope effect on the moment of inertia, which for a diatomic molecule, again depends on the reduced mass. They noted that isotope effects should be seen in pure rotational spectra, as well as in vibrational spectra with rotational fine structure, and in electronic spectra with fine structure. They pointed out the lack of experimental data then available for making comparison. [Pg.25]

In his recent work on the fine structure of the mercury spectrum, Ruarke has met with only limited success in his attempt to construct a fine structure energy level diagram. The most extensive work on fine structure in mercury has been by Nagaoka, Sugiura and Mishima. Of their results Wood has found the structure assigned to the line 2537 A incorrect and the author has foimd that there appears to be some discrepancies in the structiue reported for the lines 3650 and 2967 A. The full report is being sent the Phil, Mag. for publication. The structures fotmd for these lines are as follows ... [Pg.3]


See other pages where Energy-level fine structure is mentioned: [Pg.70]    [Pg.70]    [Pg.143]    [Pg.32]    [Pg.32]    [Pg.71]    [Pg.191]    [Pg.282]    [Pg.24]    [Pg.802]    [Pg.17]    [Pg.243]    [Pg.63]    [Pg.84]    [Pg.268]    [Pg.481]    [Pg.109]    [Pg.642]    [Pg.44]    [Pg.26]    [Pg.324]    [Pg.19]    [Pg.112]    [Pg.436]    [Pg.178]    [Pg.202]    [Pg.79]    [Pg.10]    [Pg.70]    [Pg.77]    [Pg.151]    [Pg.152]    [Pg.110]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Energy level structure

Energy structure

Fine structure

Level structure

© 2024 chempedia.info