Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity in alkylation

Enantioselective Alkylation. Both antipodes of this chiral amine have been used in the enantioselective alkylation of ketones and aldehydes via their respective chiral, nonracemic lithioe-namines (eq 1). The enantioselectivity in alkylation results from the induced rigidity of the lithioenamine upon chelation with the methoxy group, providing the bias necessary to influence the direction and rate of entry of the electrophile. [Pg.56]

In 2008, these authors reported a new strategy to attach chiral trans-l-arenesulfonylamino-2-isoborneolsulfonylaminocyclohexane to an achiral Frechet dendron (polyether having a repeated 3,5-dioxybenzyl structure) by a radical approach.The dendrimers obtained were successfully used in the enantioselective nucleophilic alkylation and arylation of ketones, providing... [Pg.177]

Enantioselective enolate alkylation can be done using chiral auxiliaries. (See Section 2.6 of Part A to review the role of chiral auxiliaries in control of reaction stereochemistry.) The most frequently used are the A-acyloxazolidinones.89 The 4-isopropyl and 4-benzyl derivatives, which can be obtained from valine and phenylalanine, respectively, and the c -4-methyl-5-phenyl derivatives are readily available. Another useful auxiliary is the 4-phenyl derivative.90... [Pg.41]

Lewis acid-catalyzed additions can be carried out in the presence of other chiral ligands that induce enantioselectivity.156 Titanium TADDOL induces enantioselectivity in alkylzinc additions to aldehydes. A variety of aromatic, alkyl, and a, (3-unsaturated aldehydes give good results with primary alkylzinc reagents.157... [Pg.656]

Enantioselectivities in the range of 97.7-99.9%, with the majority in the range of 98.4-99.1%, are obtained in the asymmetric hydrogenation of aryl alkyl ketones with ruthenium catalyst 109.641 The same systems can hydrogenate /3-keto esters (95.2-98.6% ee) and a,/i-unsa(urated acids (96.2% in a single example).642... [Pg.113]

It transpires that most classes of monodentate ligands include members that are able to induce high enantioselectivity in the hydrogenation of the two benchmark substrates 52 a and 53 a. It is not clear whether their corresponding acids 52b and 53 b have been studied or, alternatively, if the authors decided not to include (disappointing) ee-values. For phosphoramidite MonoPhos (29 a), however, the ee-values are invariably excellent. Overall, the TOFs range from 50 to 170 IT1, but have not been optimized in most cases. Unfortunately, with one exception [87], the hydrogenation of dehydroamino esters in which R1 is a (functionalized) alkyl substituent has not been studied, probably because of their difficult accessibility. [Pg.1011]

BINOL and related compounds have proved to be effective catalysts for a variety of reactions. Zhang et al.106a and Mori and Nakai106b used an (R)-BINOL-Ti(OPr )4 catalyst system in the enantioselective diethylzinc alkylation of aldehydes, and the corresponding secondary alcohols were obtained with high enantioselectivity. This catalytic system works well even for aliphatic aldehydes. Dialkylzinc addition promoted by TifOPr1 in the presence of (R)- or (A)-BINOL can give excellent results under very mild conditions. Both conversion of the aldehyde and the ee of the product can be over 90% in most cases. The results are summarized in Table 2-14. [Pg.115]

The studies summarized above clearly bear testimony to the significance of Zr-based chiral catalysts in the important field of catalytic asymmetric synthesis. Chiral zircono-cenes promote unique reactions such as enantioselective alkene alkylations, processes that are not effectively catalyzed by any other chiral catalyst class. More recently, since about 1996, an impressive body of work has appeared that involves non-metallocene Zr catalysts. These chiral complexes are readily prepared (often in situ), easily modified, and effect a wide range of enantioselective C—C bond-forming reactions in an efficient manner (e. g. imine alkylations, Mannich reactions, aldol additions). [Pg.223]

Scheme 1. Catalytic enantioselective aldehyde alkylation affords the chiral macrocyclic alcohol 3 in Oppolzer s total synthesis of muscone (1993). Scheme 1. Catalytic enantioselective aldehyde alkylation affords the chiral macrocyclic alcohol 3 in Oppolzer s total synthesis of muscone (1993).
G. Bellucci, C. Chiappe, F. Marioni, M. Benetti, Regio- and Enantioselectivity of the Cytosolic Epoxide Hydrolase-Catalysed Hydrolysis of Racemic Monosubstituted Alkyloxiranes ,./. Chem. Soc., Perkin Trans. 1 1991, 361 - 363 G. Bellucci, C. Chiappe, L. Conti, F. Marioni, G. Pierini, Substrate Enantioselection in the Microsomal Epoxide Hydrolase Catalyzed Hydrolysis of Monosubstituted Oxiranes. Effects of Branching of Alkyl Chains ,./. Org. Chem. 1989, 54, 5978 - 5983. [Pg.674]

The chiral A/ -propionyl-2-oxazolidones (32 and 38) are also useful chiral auxiliaries in the enantioselective a-alkylation of carbonyl compounds, and it is interesting to observe that the sense of chirality transfer in the lithium enolate alkylation is opposite to that observed in the aldol condensation with boron enolates. Thus, whereas the lithium enolate of 37 (see Scheme 9.13) reacts with benzyl bromide to give predominantly the (2/ )-isomer 43a (ratio 43a 43b = 99.2 0.8), the dibutylboron enolate reacts with benzaldehyde to give the (3R, 25) aldol 44a (ratio 44a 44b = 99.7 0.3). The resultant (2R) and (25)-3-phenylpropionic acid derivatives obtained from the hydrolysis of the corresponding oxazolidinones indicated the compounds to be optically pure substances. [Pg.249]

However, very few catalyst systems reported to date are highly effective for both p- aryl and p-alkyl acyclic enone substrates in the copper-catalyzed asymmetric 1,4-addition. Ligand 27, developed by Hoveyda, shows high enantioselectivity in the 1,4-addition of dialkylzinc reagents to various acyclic enones (Figure 3.6). " ... [Pg.64]


See other pages where Enantioselectivity in alkylation is mentioned: [Pg.41]    [Pg.767]    [Pg.566]    [Pg.41]    [Pg.767]    [Pg.566]    [Pg.239]    [Pg.255]    [Pg.189]    [Pg.195]    [Pg.175]    [Pg.180]    [Pg.50]    [Pg.8]    [Pg.76]    [Pg.418]    [Pg.1174]    [Pg.84]    [Pg.223]    [Pg.413]    [Pg.306]    [Pg.395]    [Pg.395]    [Pg.7]    [Pg.9]    [Pg.45]    [Pg.272]    [Pg.383]    [Pg.696]    [Pg.789]    [Pg.860]    [Pg.1166]    [Pg.223]    [Pg.196]    [Pg.611]    [Pg.638]    [Pg.239]    [Pg.255]    [Pg.63]    [Pg.24]   
See also in sourсe #XX -- [ Pg.191 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Alkylation enantioselective

Alkylation enantioselectivity

Enantioselective Catalysis in Alkylations and Allylations of Enolates

Enantioselective alkylations

Enantioselectivity alkylations

Enantioselectivity in Alkylation Reactions

Enantioselectivity in allylic alkylation

© 2024 chempedia.info