Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate enantioselectivity

Fig. 23. Prototypical receptor molecules for chiral (enantioselective) substrate recognition. Fig. 23. Prototypical receptor molecules for chiral (enantioselective) substrate recognition.
The metal-catalyzed [5 + 2]-cycloaddition reaction of VCPs and 7t-systems provides a new concept for seven-membered ring construction that has been significantly advanced over the last decade in the areas of catalyst development, chemo-, diastereo-, and enantioselectivity, substrate scope, and applications to total synthesis. [Pg.614]

Feenstra KA, Hofstetter K, Bosch R, et al. Enantioselective substrate binding in a monooxygenase protein model by molecular dynamics and docking. Biophys J 2006 91 3206-3216. [Pg.460]

Many of the proteins formed by expression of DNA genes also perform as templates. Enzymes, for example, are in fact concave templates (see later) and provide a complementary, enantioselective substrate environment or template cavity within which a chemical reaction takes place. Antibodies likewise bind to antigens selectively. Fidelity, selectivity and specificity of templating in biological systems are so far unsurpassed by man-made ones. Nevertheless very recently Mosbach et al. [4] were able to show that an immunoassay based on antibody recognition could equally well be conducted with an imprinted polymer. [Pg.83]

Directed evolution has rapidly emerged as a powerful new tool for altering the properties of an enzyme in a targeted manner. Provided that the desired characteristic can been selected for by means of an analytical screen, it is possible to consider altering a range of properties of a particular enzyme including enantioselectivity, substrate specificity, solvent stability, catalytic turnover and thermal stability. [Pg.137]

Quantitative Analysis of Selectivity. One of the principal synthetic values of enzymes stems from their unique enantioselectivity, ie, abihty to discriminate between enantiomers of a racemic pair. Detailed quantitative analysis of kinetic resolutions of enantiomers relating the extent of conversion of racemic substrate (c), enantiomeric excess (ee), and the enantiomeric ratio (E) has been described in an excellent series of articles (7,15,16). [Pg.331]

PPL and Hpase from Pseudomonas sp. catalyze enantioselective hydrolysis of sulfinylalkanoates. For example, methyl sulfinylacetate (46) was resolved by Pseudomonas sp. Hpase in good yield and excellent selectivity (62). This procedure was suitable for the preparation of sulfinylalkanoates where the ester and sulfoxide groups are separated by one or two methylene units. Compounds with three methylene groups were not substrates for the Hpase (65). [Pg.338]

Resolution of Racemic Amines and Amino Acids. Acylases (EC3.5.1.14) are the most commonly used enzymes for the resolution of amino acids. Porcine kidney acylase (PKA) and the fungaly3.spet i//us acylase (AA) are commercially available, inexpensive, and stable. They have broad substrate specificity and hydrolyze a wide spectmm of natural and unnatural A/-acyl amino acids, with exceptionally high enantioselectivity in almost all cases. Moreover, theU enantioselectivity is exceptionally good with most substrates. A general paper on this subject has been pubUshed (106) in which the resolution of over 50 A/-acyl amino acids and analogues is described. Also reported are the stabiUties of the enzymes and the effect of different acyl groups on the rate and selectivity of enzymatic hydrolysis. Some of the substrates that are easily resolved on 10—100 g scale are presented in Figure 4 (106). Lipases are also used for the resolution of A/-acylated amino acids but the rates and optical purities are usually low (107). [Pg.343]

There are two distinct classes of enzymes that hydrolyze nitriles. Nittilases (EC 3.5.5. /) hydrolyze nittiles directiy to corresponding acids and ammonia without forming the amide. In fact, amides are not substrates for these enzymes. Nittiles also may be first hydrated by nittile hydratases to yield amides which are then converted to carboxyUc acid with amidases. This is a two-enzyme process, in which enantioselectivity is generally exhibited by the amidase, rather than the hydratase. [Pg.344]

Perhaps the biggest impact on the practical utilization of enzymes has been the development of nonaqueous enzymology (11,16,33,35). The use of enzymes in nonaqueous media gready expands the scope of suitable transformations, simplifies thek use, and enhances stabiUty. It also provides an easy means of regulation of the substrate specificity and regio- and enantioselectivity of enzymes by changing the reaction medium. [Pg.350]

Spatial and/or coordinative bias can be introduced into a reaction substrate by coupling it to an auxiliary or controller group, which may be achiral or chiral. The use of chiral controller groups is often used to generate enantioselectively the initial stereocenters in a multistep synthetic sequence leading to a stereochemically complex molecule. Some examples of the application of controller groups to achieve stereoselectivity are shown retrosynthetically in Chart 19. [Pg.50]

Enantioselective processes involving chiral catalysts or reagents can provide sufficient spatial bias and transition state organization to obviate the need for control by substrate stereochemistry. Since such reactions do not require substrate spatial control, the corresponding transforms are easier to apply antithetically. The stereochemical information in the retron is used to determine which of the enantiomeric catalysts or reagents are appropriate and the transform is finally evaluated for chemical feasibility. Of course, such transforms are powerful because of their predictability and effectiveness in removing stereocenters from a target. [Pg.51]

Relationships between stereocenters vary between two extremes. On the one hand, stereocenters may interact strongly in a spatial sense if they are directly joined, proximate to one another, or part of a compact rigid-ring structure. On the other hand, two stereocenters which are remote from one another and/or flexibly connected may be so independent that one cannot be used to provide substrate spatial control for the other. Nonetheless, this latter type of stereorelationship may still be clearable if the target molecule can be disconnected to divide the two stereocenters between two precursors or if an appropriate enantioselective transform is available. [Pg.54]

In recent years, several modifications of the Darzens condensation have been reported. Similar to the aldol reaction, the majority of the work reported has been directed toward diastereo- and enantioselective processes. In fact, when the aldol reaction is highly stereoselective, or when the aldol product can be isolated, useful quantities of the required glycidic ester can be obtained. Recent reports have demonstrated that diastereomeric enolate components can provide stereoselectivity in the reaction examples include the camphor-derived substrate 26, in situ generated a-bromo-A -... [Pg.17]

Initial studies on the Jacobsen-Katsuki epoxidation reaction identified conjugated eyelie and acyelic cw-disubstituted olefins as the class of olefins best suited for the epoxidation reaetion. " Indeed a large variety of c/s-disubstituted olefins have been found to undergo epoxidation with a high degree of enantioselectivity. 2,2"-Dimethylehromene derivatives are especially good substrates for the epoxidation reaetion. Table 1.4.1 lists a variety of examples with their corresponding reference. [Pg.36]

The first asymmetric Mn(salen)-catalyzed epoxidation of silyl enol ethers was carried out by Reddy and Thornton in 1992. Results from the epoxidation of various silyl enol ethers gave the corresponding keto-alcohols in up to 62% ee Subsequently, Adam and Katsuki " independently optimized the protocol for these substrates yielding products in excellent enantioselectivity. [Pg.39]

As with i -substituted allyl alcohols, 2,i -substituted allyl alcohols are epoxidized in excellent enantioselectivity. Examples of AE reactions of this class of substrate are shown below. Epoxide 23 was utilized to prepare chiral allene oxides, which were ring opened with TBAF to provide chiral a-fluoroketones. Epoxide 24 was used to prepare 5,8-disubstituted indolizidines and epoxide 25 was utilized in the formal synthesis of macrosphelide A. Epoxide 26 represents an AE reaction on the very electron deficient 2-cyanoallylic alcohols and epoxide 27 was an intermediate in the total synthesis of (+)-varantmycin. [Pg.56]

Desymmetrization of meso-bis-allylic alcohols is an effective method for the preparation of chiral functionalized intermediates from meso-substrates. Schreiber et al has shown that divinyl carbonyl 58 is epoxidized in good enantioselectivity. However, because the product epoxy alcohols 59 and 60 also contain a reactive allylic alcohol that are diastereomeric in nature, a second epoxidation would occur at different rates and thus affect the observed ee for the first AE reaction and the overall de. Indeed, the major diastereomeric product epoxide 59 resulting from the first AE is less reactive in the second epoxidation. Thus, high de is easily obtainable since the second epoxidation removes the minor diastereomer. [Pg.60]

For a reaction as complex as catalytic enantioselective cyclopropanation with zinc carbenoids, there are many experimental variables that influence the rate, yield and selectivity of the process. From an empirical point of view, it is important to identify the optimal combination of variables that affords the best results. From a mechanistic point of view, a great deal of valuable information can be gleaned from the response of a complex reaction system to changes in, inter alia, stoichiometry, addition order, solvent, temperature etc. Each of these features provides some insight into how the reagents and substrates interact with the catalyst or even what is the true nature of the catalytic species. [Pg.127]

The main strategy for catalytic enantioselective cycloaddition reactions of carbonyl compounds is the use of a chiral Lewis acid catalyst. This approach is probably the most efficient and economic way to effect an enantioselective reaction, because it allows the direct formation of chiral compounds from achiral substrates under mild conditions and requires a sub-stoichiometric amount of chiral material. [Pg.151]


See other pages where Substrate enantioselectivity is mentioned: [Pg.191]    [Pg.336]    [Pg.1581]    [Pg.392]    [Pg.401]    [Pg.11]    [Pg.563]    [Pg.332]    [Pg.271]    [Pg.270]    [Pg.191]    [Pg.336]    [Pg.1581]    [Pg.392]    [Pg.401]    [Pg.11]    [Pg.563]    [Pg.332]    [Pg.271]    [Pg.270]    [Pg.617]    [Pg.81]    [Pg.512]    [Pg.242]    [Pg.178]    [Pg.181]    [Pg.331]    [Pg.343]    [Pg.348]    [Pg.350]    [Pg.56]    [Pg.30]    [Pg.57]    [Pg.58]    [Pg.7]    [Pg.87]    [Pg.126]    [Pg.146]   
See also in sourсe #XX -- [ Pg.372 , Pg.373 , Pg.374 , Pg.382 , Pg.383 , Pg.384 , Pg.385 , Pg.386 , Pg.390 ]




SEARCH



Enantioselective C H Amination of Achiral Substrates

Enantioselective Hydrogenation of Prochiral Substrates

Enantioselective additions achiral substrates

Enantioselective allylic substitutions substrates

Enantioselective hydrogenation substrates

Enantioselective synthesis substrate selection

Enantioselectivity racemic substrate

Enantioselectivity substrate chemistry

Enantioselectivity substrate engineering

Hydantoin substrate enantioselectivity

Identification of Amino Acid Residues Relevant to Substrate Specificity and Enantioselectivity

Substrate Scope, Activity, and Enantioselectivity

Total Synthesis of Coniine through Enantioselective RCM with Substrates Bearing a Tertiary Amine

© 2024 chempedia.info