Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective reactions reductions

Reaction of an achiral reagent with a molecule exhibiting enantiotopic faces will produce equal quantities of enantiomers, and a racemic mixture will result. The achiral reagent sodium borodeuteride, for example, will produce racemic l-deM/eno-ethanol. Chiral reagent can discriminate between the prochiral faces, and the reaction will be enantioselective. Enzymatic reduction of acetaldehyde- -[Pg.106]

The hydrogen transfer reaction (HTR), a chemical redox process in which a substrate is reduced by an hydrogen donor, is generally catalysed by an organometallic complex [72]. Isopropanol is often used for this purpose since it can also act as the reaction solvent. Moreover the oxidation product, acetone, is easily removed from the reaction media (Scheme 14). The use of chiral ligands in the catalyst complex affords enantioselective ketone reductions [73, 74]. [Pg.242]

The reduction of this ester over Pd differed from the corresponding reaction over Pi in every important particular. Enantiomeric excess was low (high over Pt) and in the reverse sense (e g cinchonidine modification provided an S-excess in the product over Pd but an R-excess over Pt) Enantioselective reactions underwent self-poisoning over Pd (proceeded to completion over Pt), were of non-integral order (integral over Pt) and proceeded more slowly than reaction over unmodified catalyst (enhanced rate over Pt) Enantioselective reaction was solvent-specific over Pd (not over Pt) and was favoured by low catalyst reduction temperature (high reduction temperature for Pt)... [Pg.228]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]

Another soluble polymer-enlarged catalyst was synthesized and tested by Wandrey et a/.[57] The catalyst was prepared by a coupling of an oxazaborolidine via a hydrosilylation reaction to a methyl hydrosiloxane-dimethylsiloxane copolymer (Figure 4.40). The catalyst was used in the enantioselective borane reduction of ketones. [Pg.99]

Chemical catalysts for transfer hydrogenation have been known for many decades [2e]. The most commonly used are heterogeneous catalysts such as Pd/C, or Raney Ni, which are able to mediate for example the reduction of alkenes by dehydrogenation of an alkane present in high concentration. Cyclohexene, cyclo-hexadiene and dihydronaphthalene are commonly used as hydrogen donors since the byproducts are aromatic and therefore more difficult to reduce. The heterogeneous reaction is useful for simple non-chiral reductions, but attempts at the enantioselective reaction have failed because the mechanism seems to occur via a radical (two-proton and two-electron) mechanism that makes it unsuitable for enantioselective reactions [2 c]. [Pg.1216]

Takano s group reported the first enantioselective total synthesis of (—)-anti-rhine as well (146). Chiral product 235 was prepared via a number of stereoselective reactions. Reductive condensation of 235 with tryptamine, using sodium cyanoborohydride at pH 6, supplied lactam 236, which was reduced by di-isobutylalminum hydride to hemiacetal 237. The latter could be cyclized to (-)-antirhine by simple acid treatment (146). [Pg.185]

Radical chemistry has seen tremendous progress in the past two decades and can now be considered as an eminent sub discipline in synthetic organic chemistry [1-6]. Diastereoselective radical chemistry is well established and many examples of enantioselective radical reactions have appeared in the recent literature. For reviews on diastereoselective radical chemistry see [7-11] for reviews on enantioselective radical chemistry see [12-16] and for reviews on conjugate additions, see [17,18]. This review will detail different ways to introduce asymmetry during a radical reaction. These transformations can be broadly classified into atom transfer reactions, reductive alkylations, fragmentations, addition and trapping experiments, and electron transfer reactions. [Pg.119]

Scheme 16 summarizes the results obtained by enantioselective radical reduction of a-bromoester by chiral binaphthyl-derived tin hydride. The reactions were generally performed at - 78 °C. An increase in the temperature resulted in the lowering of the selectivity. All reactions mediated by (S)-configured chiral tin hydride showed an (R)-selective preference in the product. The use of the opposite enantiomer of the chiral stannane resulted in a quantitative reversal of the selectivity (not shown). The selectivity remained modest on addition of magnesium Lewis acids. These reductions were also feasible when a catalytic amount of chiral tin hydride (1 mol %) was employed in combination with an excess of achiral hydride NaCNBH3, providing similar results. [Pg.132]

Enantioselective Birch reduction-alkylation The chiral benzoic acid derivative 1, prepared by condensation of o-hydroxybenzoic acid with L-prolinol followed by cyclization (Mitsunobu reaction), undergoes Birch reduction (K, NH3, THF, t-butyl alcohol) followed by alkylation with C2H5I to give essentially only 2. Acid hydrolysis returns the chiral auxiliary and provides the 2-alkylated cyclo-hexenone 3. [Pg.32]

Use of thiaprolinol amino alcohols as ligands for enantioselective borane reduction of ketones111 and of a fluorotitanium-TADDOLate to catalyse reduction of benzaldehyde87c has been described above under Organometallics and Allylation Reactions, respectively. [Pg.28]

Scheme 15)62. After terminating the reaction at a conversion of 38% (relative to total amount of substrate rac-78), the product (S)-43 was separated from the nonreacted substrate by column chromatography on silica gel and isolated on a preparative scale in 71% yield (relative to total amount of converted rac-78) with an enantiomeric purity of 95% ee. Recrystallization led to an improvement of the enantiomeric purity by up to >98% ee. The biotransformation product (S)-43 is the antipode of compound (/ )-43 which was obtained by enantioselective microbial reduction of the acylsilane 42 (see Scheme 8)53. The nonreacted substrate (/ )-78 was isolated in 81% yield (relative to total amount of nonconverted rac-78) with an enantiomeric purity of 57% ee. For further enantioselective enzymatic hydrolyses of racemic organosilicon esters, with the carbon atom as the center of chirality, see References 63 and 64. [Pg.2385]

As mentioned elsewhere, the development of transition metal catalysts that allowed for high enantioselectivity in reduction reactions showed that chemists could achieve comparable yields and ee s to enzymes. A large number of transition metal catalysts and ligands are now available. A number of reactions have been scaled up for commercial production that use an asymmetric hydrogenation (Chapters 12-18) or a hydride delivery (Chapters 12, 16, and 17) for the key step that forms the new stereogenic center. [Pg.9]

Researchers at Sepracor later disclosed the use of a new class of chiral oxazaborolidines derived from r/. v-aminoindanol in the enantioselective borane reduction of a-haloketones.6,7 The 5-hydrogen oxazaborolidine ligand 10 was prepared in situ from d,v-aminoindanol 1 and BH3 THF.8 Stock solutions of 5-methyl oxazaborolidine 11-16 were obtained by reaction of the corresponding N-alkyl aminoindanol with trimethyl boroxine.6,7 5-Methyl catalyst 11 was found to be more selective (94% ee at 0°C) than the 5-hydrogen catalyst 10 (89% ee at 0°C), and enantioselectivities with 11 increased at lower temperatures (96% ee at -20°C). The catalyst structure was modified by introduction of A-a I kyI substituents. As a general trend, reactivities and selectivities decreased as the steric bulk or the chelating ability of the A -alkyl substituent increased (Scheme 17.4). [Pg.323]


See other pages where Enantioselective reactions reductions is mentioned: [Pg.46]    [Pg.46]    [Pg.46]    [Pg.46]    [Pg.247]    [Pg.203]    [Pg.10]    [Pg.265]    [Pg.339]    [Pg.347]    [Pg.155]    [Pg.115]    [Pg.1273]    [Pg.122]    [Pg.134]    [Pg.83]    [Pg.164]    [Pg.47]    [Pg.49]    [Pg.27]    [Pg.313]    [Pg.37]    [Pg.402]    [Pg.1267]    [Pg.68]    [Pg.71]    [Pg.73]    [Pg.2378]    [Pg.2383]    [Pg.528]    [Pg.153]    [Pg.158]    [Pg.741]    [Pg.287]   
See also in sourсe #XX -- [ Pg.1219 ]




SEARCH



Enantioselective reaction

Enantioselective reactions biological reduction

Enantioselective reactions carbonyl reductions

Reduction enantioselective

© 2024 chempedia.info