Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valine racemization

Enzymatic hydrolysis is also used for the preparation of L-amino acids. Racemic D- and L-amino acids and their acyl-derivatives obtained chemically can be resolved enzymatically to yield their natural L-forms. Aminoacylases such as that from Pispergillus OTj e specifically hydrolyze L-enantiomers of acyl-DL-amino acids. The resulting L-amino acid can be separated readily from the unchanged acyl-D form which is racemized and subjected to further hydrolysis. Several L-amino acids, eg, methionine [63-68-3], phenylalanine [63-91-2], tryptophan [73-22-3], and valine [72-18-4] have been manufactured by this process in Japan and production costs have been reduced by 40% through the appHcation of immobilized cell technology (75). Cyclohexane chloride, which is a by-product in nylon manufacture, is chemically converted to DL-amino-S-caprolactam [105-60-2] (23) which is resolved and/or racemized to (24)... [Pg.311]

However, the use of a HPLC separation step enabled a remarkable acceleration of the deconvolution process. Instead of preparing all of the sublibraries, the c(Arg-Lys-O-Pro-O-P-Ala) library was fractionated on a semipreparative HPLC column and three fractions as shown in Fig. 3-2 were collected and subjected to amino acid analysis. According to the analysis, the least hydrophobic fraction, which eluted first, did not contain peptides that included valine, methionine, isoleucine, leucine, tyrosine, and phenylalanine residues and also did not exhibit any separation ability for the tested racemic amino acid derivatives (Table 3-1). [Pg.64]

Based on chiral functional monomers such as (15), MICSPs can be prepared using a racemic template. Thus, using racemic A-(3,5-dinitrobenzoyl)-a-methylbenzy-lamine (16) as template, a polymer capable of racemic resolution of the template was obtained [67]. Another chiral monomer based on L-valine (17), was used to prepare MIPS for the separation of dipeptide diastereomers [68]. In these cases the configu-... [Pg.169]

S)-Isopropylmorpholine-2,5-dione, six-membered depsipeptide, was polymerized by lipase PC and PPL catalysts [112]. High temperature (100°C or 130°C) was required for the polymerization, yielding biodegradable poly(de-psipeptide). During the polymerization, the racemization of the valine residue took place. Demonstrated was PPL-catalyzed ring-opening polymerization of ethylene isopropyl phosphate, five-membered cyclic phosphate [113]. [Pg.255]

Christensen16 isolated the dipeptide valylvaline from completely hydrolyzed gramicidin. This worker later showed that he had isolated a racemic mixture of D(-)-valyl-D(-)-valine and L(+)-valyl-L(4)-valine rather than dipeptides containing one d and one L-residue.17... [Pg.183]

Ha is the more and HB is the less complexed host enantiomer in the aqueous phase. In the second type of experiment excess of racemic valine and optically pure (S)-[269] were distributed between two immiscible phases. In this experiment a 1 1 complex is formed in the non-aqueous phase in which L-valine dominates by an amount of 12.5% (CRFchc1j 1.28 and EDC 1.50). In terms of differences in free energy between the two diastereoisomeric complexes this means a difference in A(AG°) of 0.23 kcal mol-1 in favour of the (l)-S-[269] complex. Similar experiments have been carried out with crown ethers [270]—[280]. [Pg.384]

Enantiomer distribution constant (EDC). Estimates in CDClj-rich layer in the partitioning of an equivalent of racemic host (H) and optically pure L-valine as guest (G) and their complexes between two liquid phases composed of RCO,D(H). CDC1 and 020"... [Pg.385]

It has been known for years that the activated residues of acyl- and peptidylamino acids enantiomerize during coupling (1.9). However, the racemization tests available (see section 4.9) did not allow for a valid comparison of the tendency of residues to isomerize because they incorporated a variety of aminolyzing residues and N-substituents. Valid demonstration of the different sensitivities of residues was provided by classical work on the synthesis of insulin. It was found that a 16-residue segment with O-tert-butyltyrosine at the carboxy terminus produced 25% of epimer in HOBt-assisted DCC-mediated coupling in dimethylformamide, and the same segment with leucine at the carboxy terminus produced no epimer. Only when series such as Z-Gly-Xaa-OH coupled with valine benzyl ester became available was it possible to compare many residues with confidence. Unfortunately, it transpires that the issue is extremely complex. [Pg.112]

Their studies involved the partial polymerization of NCAs of mixtures of specific amino adds having known e.e.s, followed by determination of the e.e.s of the amino adds in both the resulting polypeptides and in the residual unreacted NCA monomers. [94] In a typical experiment it was found that when an optically impure leucine NCA monomer having an l > d e.e. of 31.2% was polymerized to the extent of 52 % to the helical polyleucine peptide, the e.e. of the polymer was enhanced to 45.4 %, an increase of 14.2 %. In the same experiment the e.e. of the unreacted leucine NCA monomer was depleted to a similar extent. Analogous experiments with valine NCAs of known e.e.s, however, led to a reverse effect, namely, the preferential incorporation of the racemate rather than one enantiomer into the growing polyvaline peptide. This finding was interpreted to be the result of the fact that polyvaline consists of (3-sheets rather than a-helices, emphasizing that the Wald mechanism applies only to a-helix polymers. At about the same time Brach and Spach [95] showed that, under proper conditions, (3-sheet polymers could also be implicated in the amplification of amino add e.e.s. [Pg.187]

Racemic modifications may be resolved. There are very few examples of this approach having been employed successfully. The racemic cylic ether (RS)-36, which contains two CH2OCH2CO2H arms attached to the 3 and 3 positions on the axially chiral binaphthyl units, has been resolved (48-50, 93, 94) to optical purity in both its enantiomers by liquid-liquid chromatography using a chiral stationary phase of either (R)- or (S)-valine adsorbed on diatomaceous eaitii. Very recently, the optical resolution of crown ethers (/ S)-37 and (/ 5)-38, incorporating the elements of planar chirality in the form of a rron -doubly bridged ethylene unit, has been achieved (95) by HPLC on (+)-poly(triphenyl-methyl methacrylate). [Pg.229]

The numerous preparations of mono-, di-, tri-, and hexafluoro derivatives of valine, norvaline, leucine, norleucine, and isoleucine, using classical methods of amino acid chemistry (e.g., amination of an a-bromoacid, " azalactone, Strecker reaction, amidocarbonylation of a trifluoromethyl aldehyde, alkylation of a glycinate anion are not considered here. Pure enantiomers are generally obtained by enzymatic resolution of the racemate, chemical resolution, or asymmetric Strecker reaction. ... [Pg.152]

To circumvent side reactions and racemization of the chiral auxiliary in metalation reactions of cyclohexanone imines derived from the tert-butyl esters of valine and tm-leucine, deprotonation is performed using LDA at low temperatures (— 78 °C, THF, 0.5 h). [Pg.977]

If a-H-amino acids (e.g L-valine) are employed as the chiral auxiliary, racemization may occur on hydrolytic workup. In order to avoid this racemization, the initial alkylation product has to be hydrolyzed under neutral conditions using a phosphate buffer solution11. [Pg.1043]

With chiral racemic oxiranes one enantiomer reacts faster than the other the degree of kinetic resolution is very high for L-valine/alanine-based dialkoxydihydropyrazines. For example, in the reaction of one equivalent of (2.S )-2,5-dihydro-2-isopropyl-3,6-dimethoxy-5-methyl-pyrazine (1, R1 = CH3) with two equivalents of fW-(//,/ )-2,3-dimethyloxirane (R2,R4 = CH3 R = H) virtually only the (2//,3/ )-oxirane enantiomer reacts with the lithiated dihydropyrazine to give exclusively the (l /, 2/, 2 / )-configuratcd adduct i.e., (2/ ,5S)-2,5-dihydro-5-isopropyl-3,6-dimethoxy-2-[(l/ ,2/ )-2-(2-methoxyethoxymethoxy)-l-methylpropyl]-2-methylpyrazine, entry 7. Likewise, kinetic resolution (intramolecular) occurs upon reaction with rac-7-oxabicy-clo[4.1.0]heptane (entry 8). [Pg.1051]

High stereoselectivities (94-100 %) are attained in the reduction of aromatic ketones by use of a new chiral borane complex with (S)-2-amino-3-methyl-l,l-diphenylbutan-l-ol,(S-68) readily prepared in two steps from (S)-valine, in an experimentally convenient procedure961. (S)-Valine methyl ester hydrochloride was converted with excess of phenylmagnesium bromide into (S-68). The same treatment of (R)-valine gave (R-68). In a typical asymmetric reduction the reagent, prepared from (S-68) and borane, and the ketone (69) in tetrahydrofuran were kept at 30 °C for some hours. The corresponding alcohols were obtained in high optical purity. (S-68) could be recovered to more than 80% without racemization 96). [Pg.186]

Symmetrical hw-Iactim ethers of type (187) — built up from two identical amino acids — do have one disadvantage, inherent in the system only 50% of the chiral auxiliary — in this case (S)-alanine — is recovered the other 50 % is first racemized via (188) and finally incorporated in the product (189). To avoid this disadvantage Schollkopf et al. have developed methods to synthesize mixed bw-lactim ethers, starting from two different amino acids, e.g. (S)-valine and (R,S)-alanine. Thus, the authors obtained cyclo [(S)-val-(R,S)-ala] and prepared the related h/.s-lactim ether... [Pg.218]

The disadvantage in using such symmetrical bislactim ethers is that half the chiral auxiliary ends up as part of the product molecule thus only half of the auxiliary can be recovered and reused. This drawback is avoided in the mixed bislactim ether prepared from a chiral auxiliary (L-valine) and a racemic amino acid (e.g., DL-alanine). Regiospecific deprotonation followed by diastereoselective alkylation leads to the required a-methyl amino acid ester (193) (83T2085) the de is >95%. In this method, the chiral auxiliary (L-valine) is recovered intact. (Scheme 59). [Pg.261]

Snyder et al.7S bound N-carboxymethyl-L-valine to a styrene-divinylbenzene copolymer 35 and used its Cu complex to resolve racemic amino acids. With all... [Pg.37]

The utility of the method was demonstrated with a variety of electron-rich and electron-poor aryl aldehydes, but the method was not suitable for aliphatic aldehydes. No racemization was observed in the copper-catalyzed oxidative amidation reaction when an optically active amine, (S)-valine methyl ester, was employed. [Pg.294]


See other pages where Valine racemization is mentioned: [Pg.232]    [Pg.65]    [Pg.511]    [Pg.112]    [Pg.73]    [Pg.212]    [Pg.213]    [Pg.45]    [Pg.87]    [Pg.224]    [Pg.225]    [Pg.1222]    [Pg.137]    [Pg.254]    [Pg.323]    [Pg.183]    [Pg.203]    [Pg.622]    [Pg.458]    [Pg.383]    [Pg.392]    [Pg.97]    [Pg.98]    [Pg.86]    [Pg.231]    [Pg.141]    [Pg.146]    [Pg.180]    [Pg.528]    [Pg.352]   
See also in sourсe #XX -- [ Pg.249 , Pg.250 ]




SEARCH



Valin

© 2024 chempedia.info