Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion polymerization problems

Continuous Emulsion Polymerization Problems in Development of Commercial Processes... [Pg.1]

Early efforts to produce synthetic mbber coupled bulk polymerization with subsequent emulsification (9). Problems controlling the heat generated during bulk polymerization led to the first attempts at emulsion polymerization. In emulsion polymerization hydrophobic monomers are added to water, emulsified by a surfactant into small particles, and polymerized using a water-soluble initiator. The result is a coUoidal suspension of fine particles,... [Pg.23]

Internal surfactants, i.e., surfactants that are incorporated into the backbone of the polymer, are commonly used in PUD s. These surfactants can be augmented by external surfactants, especially anionic and nonionic surfactants, which are commonly used in emulsion polymerization. Great attention should be paid to the amount and type of surfactant used to stabilize urethane dispersions. Internal or external surfactants for one-component PUD s are usually added at the minimum levels needed to get good stability of the dispersion. Additional amounts beyond this minimum can cause problems with the end use of the PUD adhesive. At best, additional surfactant can cause moisture sensitivity problems with the PUD adhesive, due to the hydrophilic nature of the surfactant. Problems can be caused by excess (or the wrong type of) surfactants in the interphase region of the adhesive, affecting the ability to bond. [Pg.789]

Redox initiation is commonly employed in aqueous emulsion polymerization. Initiator efficiencies obtained with redox initiation systems in aqueous media are generally low. One of the reasons for this is the susceptibility of the initially formed radicals to undergo further redox chemistry. For example, potential propagating radicals may be oxidized to carbonium ions (Scheme 3.44). The problem is aggravated by the low solubility of the monomers (e.g. M VIA. S) in the aqueous phase. [Pg.95]

Continuous emulsion polymerization systems are studied to elucidate reaction mechanisms and to generate the knowledge necessary for the development of commercial continuous processes. Problems encountered with the development of continuous reactor systems and some of the ways of dealing with these problems will be discussed in this paper. Those interested in more detailed information on chemical mechanisms and theoretical models should consult the review papers by Ugelstad and Hansen (1), (kinetics and mechanisms) and by Poehlein and Dougherty (2, (continuous emulsion polymerization). [Pg.1]

In order to be economically viable, a continuous emulsion polymerization process must be able to produce a latex which satisfies application requirements at high rates without frequent disruptions. Since most latex products are developed in batch equipment, the problems associated with converting to continuous systems can be significant. Making such a change requires an understanding of the differences between batch and continuous reactors and how these differences influence product properties and reactor performance. [Pg.1]

The work reported here is part of a continuing program on the emulsion polymerization of styrene in a tubular reactor. It is now evident that the reactor construction is of primary importance in avoiding the problem of reactor plugging. The plugging is associated with a wall effect so that both the reactor dimensions and the nature of the wall surface are important. [Pg.133]

Polymers may be made by four different experimental techniques bulk, solution, suspension, and emulsion processes. They are somewhat self-explanatory. In bulk polymerization only the monomers and a small amount of catalyst is present. No separation processes are necessary and the only impurity in the final product is monomer. But heat transfer is a problem as the polymer becomes viscous. In solution polymerization the solvent dissipates the heat better, but it must be removed later and care must be used in choosing the proper solvent so it does not act as a chain transfer agent. In suspension polymerization the monomer and catalyst are suspended as droplets in a continuous phase such as water by continuous agitation. Finally, emulsion polymerization uses an emulsifying agent such as soap, which forms micelles where the polymerization takes place. [Pg.264]

Heterogeneous polymerization is used extensively to control the thermal and viscosity problems. There are three types of heterogeneous polymerization precipitation, suspension, and emulsion. Emulsion polymerization is discussed in Chap. 4. Precipitation polymerizations begin... [Pg.297]

The emulsion polymerization process has several distinct advantages. The physical state of the emulsion (colloidal) system makes it easy to control the process. Thermal and viscosity problems are much less significant than in bulk polymerization. The product of an emulsion polymerization, referred to as a latex, can in many instances be used directly without further separations. (However, there may be the need for appropriate blending operations,... [Pg.351]

Nonionic surfactants such as sorbitan monooleate yield more stable emulsions than do ionic surfactants, However, the latices from inverse emulsion polymerizations are generally less stable than those from conventional emulsion polymerizations, and flocculation is a problem. [Pg.367]

A serious drawback of solution polymerization is the need to remove the residual solvent. This problem is also present in emulsion polymerization techniques, where the water must be removed and moreover cleaned. [Pg.301]

With the advent of advanced characterization techniques such as multiple detector liquid exclusion chromatography and - C Fourier transform nuclear magnetic resonance spectroscopy, the study of structure/property relationships in polymers has become technically feasible (l -(5). Understanding the relationship between structure and properties alone does not always allow for the solution of problems encountered in commercial polymer synthesis. Certain processes, of which emulsion polymerization is one, are controlled by variables which exert a large influence on polymer infrastructure (sequence distribution, tacticity, branching, enchainment) and hence properties. In addition, because the emulsion polymerization takes place in an heterophase system and because the product is an aqueous dispersion, it is important to understand which performance characteristics are influended by the colloidal state, (i.e., particle size and size distribution) and which by the polymer infrastructure. [Pg.386]

The most common continuous emulsion polymerization systems require isothermal reaction conditions and provide for conversion control through manipulation of initiator feed rates. Typically, as shown in Figure 1, flow rates of monomer, water, and emulsifier solutions into the first reactor of the series are controlled at levels prescribed by the particular recipe being made and reaction temperature is controlled by changing the temperature of the coolant in the reactor jacket. Manipulation of the initiator feed rate to the reactor is then used to control reaction rate and, subsequently, exit conversion. An aspect of this control strategy which has not been considered in the literature is the complication presented by the apparent dead-time which exists between the point of addition of initiator and the point where conversion is measured. In many systems this dead-time is of the order of several hours, presenting a problem which conventional control systems are incapable of solving. This apparent dead-time often encountered in initiation of polymerization. [Pg.529]

The analytical predictor, as well as the other dead-time compensation techniques, requires a mathematical model of the process for implementation. The block diagram of the analytical predictor control strategy, applied to the problem of conversion control in an emulsion polymerization, is illustrated in Figure 2(a). In this application, the current measured values of monomer conversion and initiator feed rate are input into the mathematical model which then calculates the value of conversion T units of time in the future assuming no changes in initiator flow or reactor conditions occur during this time. [Pg.530]

In certain chemical and biological as well in some unit operations, foaming occurs to such an extent that the process is severely impaired or even comes to a complete standstill. For example, chemical reaction systems tend to foam if a gas is formed in nascent state, because such minute gas bubbles do not coalesce to form larger ones and therefore remain in the system. Expulsion of residual monomers after emulsion polymerization often involves serious foaming problems because, in this case, very fine gas bubbles are formed in a material system which contains emulsifiers, i.e. foam producing surfactants. [Pg.33]

The monomer can be polymerized either directly, that is undiluted (block or substance polymerization), or in the presence of a non-polymerizable solvent (solvent polymerization). In the first case there is a problem with dissipating the localized heat of reaction (traces of decomposition products result from overheating) and in the second case the solvent must be completely removed. Other possibilities are to suspend the monomers in dispersions, e.g. in water (suspension or pearl polymerization), or eventually using an emulsifier (emulsion polymerization). Emulsifiers and dispersants are considered to be processing aids for the production of polymers. [Pg.13]

The first drawback in the use of water (the solubility problem) may be overcome by using surfactants, which solubilize organic materials or form emulsions with them in water. Indeed, surfactants have been occasionally used in organic synthesis [3-6]. A successful example is emulsion polymerization [7]. Some late transition metal-catalysed reactions in water have also been conducted in the presence of surfactants or surfactantlike ligands [8-15]. In many other cases, however, large quantities of surfactant molecules compared with the reaction substrates are needed for the desired reactions to proceed efficiently, and thus, the systems are impractical even if water can be used as a solvent. From the viewpoints of practicability and applicability, the surfactant-aided organic synthesis is still at the preliminary stage. [Pg.271]


See other pages where Emulsion polymerization problems is mentioned: [Pg.312]    [Pg.238]    [Pg.539]    [Pg.190]    [Pg.194]    [Pg.544]    [Pg.134]    [Pg.68]    [Pg.51]    [Pg.195]    [Pg.195]    [Pg.366]    [Pg.49]    [Pg.607]    [Pg.255]    [Pg.312]    [Pg.539]    [Pg.238]    [Pg.206]    [Pg.163]    [Pg.150]    [Pg.7]    [Pg.528]    [Pg.541]    [Pg.434]    [Pg.64]    [Pg.94]    [Pg.134]    [Pg.1229]    [Pg.169]    [Pg.38]    [Pg.80]    [Pg.143]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Emulsion polymerization

Emulsions, polymeric

Polymerization emulsion polymerizations

Review of Recent Problems concerned with Emulsion Polymerization

© 2024 chempedia.info