Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion polymerization nucleation

Emulsion Polymerization. Emulsion SBR was commercialised and produced in quantity while the theory of the mechanism was being debated. Harkins was among the earliest researchers to describe the mechanism (16) others were Mark (17) and Elory (18). The theory of emulsion polymerisation kinetics by Smith and Ewart is still vaUd, for the most part, within the framework of monomers of limited solubiUty (19). There is general agreement in the modem theory of emulsion polymerisation that the process proceeds in three distinct phases, as elucidated by Harkins (20) nucleation (initiation), growth (propagation), and completion (termination). [Pg.495]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

Particle morphology, of fillers, 11 303-304 Particle nucleation, in emulsion polymerization, 14 713-714... [Pg.674]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

Emulsifier is not a necessary component for emulsion polymerization if ihe following conditions are satisfied The particles are formed by homogeneous nucleation mechanism, and the particles are stabilized by factor(s) olher than emulsifier. As to the latter, the sulfate end group that is the residue of persulfate initiator serves for stabilization of dispersion via interparticle electrorepulsive force (20). When the stabilization mechanism works well, a small number of particles grow during polymerization without aggregation, keeping the size distribution narrow. Finally stable, monodisperse, anionic particles are obtained. [Pg.603]

HUFT homogeneous nucleation model of emulsion polymerization I initiator... [Pg.3]

The emulsifier provides sites for the particle nucleation and stabilizes growing or the final polymer particles. Even though conventional emulsifiers (anionic, cationic, and nonionic) are commonly used in emulsion polymerization, other non-conventional ones are also used they include reactive emulsifiers and amphiphilic macromonomers. Reactive emulsifiers and macromonomers, which are surface active emulsifiers with an unsaturated group, are chemically bound to the surface of polymer particles. This strongly reduces the critical amount of emulsifier needed for stabilization of polymer particles, desorption of emulsifier from particles, formation of distinct emulsifier domains during film formation, and water sensitivity of the latex film. [Pg.13]

In accordance with the Smith-Ewart theory, the nucleation of particles takes place solely in the monomer-swollen micelles which are transformed into polymer particles [16]. This mechanism is applicable for hydrophobic (macro)mon-omers (see Scheme 2). The initiation of emulsion polymerization is a two-step process. It starts in water with the primary free radicals derived from the water-soluble initiator. The second step occurs in the monomer (macromonomer)-swollen micelles by entered oligomeric radicals. [Pg.14]

In the case of more water-soluble monomers and (amphiphilic) macromonomers, the Smith-Ewart [16] expression does not satisfactorily describe the particle nucleation. The HUFT [9,10] theory, however, satisfactorily describes the polymerization behavior or the particle nucleation of such unsaturated hydrophilic and amphiphilic monomers. The HUFT approach implies that primary particles are formed in the aqueous phase by precipitation of oligomer radicals above a critical chain length. The basic principals of the HUFT theory is that formation of primary particles will take place up to a point where the rate of formation of radicals in the aqueous phase is equal to the rate of disappearance of radicals by capture of radicals by particles already formed. Stabilization of primary particles in emulsifier-free emulsion polymerization may be achieved if the monomer (or macromonomer) contains surface active groups. Besides, the charged radical fragments of initiator increases the colloidal stability of the polymer particles. [Pg.15]

Thus in the emulsifier-free emulsion copolymerization the emulsifier (graft copolymer, etc.) is formed by copolymerization of hydrophobic with hydrophilic monomers in the aqueous phase. The ffee-emulsifier emulsion polymerization and copolymerization of hydrophilic (amphiphilic) macromonomer and hydro-phobic comonomer (such as styrene) proceeds by the homogeneous nucleation mechanism (see Scheme 1). Here the primary particles are formed by precipitation of oligomer radicals above a certain critical chain length. Such primary particles are colloidally unstable, undergoing coagulation with other primary polymer particles or, later, with premature polymer particles and polymerize very slowly. [Pg.15]

The conversion-time curves appear to be very similar to the shape typical of emulsion polymerization, i.e., an S-shaped curve is attributed to the autoacceleration caused by the gel effect (Smith-Ewart 3 kinetics, n>>l). The rate of polymerization-conversion dependence is described by a curve with two rate maxima. The decrease in the rate after passing through the first maximum is ascribed to the decrease of the monomer concentration in particles. Particle nucleation ends between 40 and 60% conversion, beyond the second rate maximum. This is explained by the presence of coemulsifier which stabilizes the monomer droplets against diffusive degradation. [Pg.17]

Microemulsion polymerizations follow a different mechanism from the conventional emulsion polymerizations. The most probable locus of particle nucle-ation was suggested to be the microemulsion monomer droplets [27], although homogeneous nucleation was not completely ruled out. The particle generation rate in microemulsion polymerization is given by an expression similar to Eq. (21), which was used for the miniemulsion polymerization of styrene [28] ... [Pg.18]

In the emulsifier free-emulsion polymerization the reaction loci are formed by nucleation of amphiphilic macromomer micelles (micellar mechanism) or by... [Pg.51]

Thus monomers such as styrene, isoprene and octyl acrylate, which have low solubilities in water, nucleate and grow very slowly during the early stages of an emulsion polymerization, whereas more soluble monomers such as methyl acrylate, vinyl acetate and acrylonitrile give rapid rates. In the presence of surfactant micelles the less soluble monomers are solubilized (11), so that they nucleate and grow more rapidly. [Pg.11]

In 1952 W. J. Priest, in an important paper, laid out all of the basic qualitative features of the theory of homogeneous nucleation in emulsion polymerization as it is known today (12). This was based upon his studies of particle size distributions in vinyl acetate polymerization initiated by potassium persulfate (K2S20g) in the presence of varying amounts of different stabilizers and inhibitors at several temperatures. Priest proposed that (1) "polymerization in solution is the initial process" ... [Pg.11]

The preparation of a latex by emulsion polymerization comprises two stages (i) particle nucleation (ii) particle growth. For the latex to be monodisperse, the particle nucleation stage must be short relative to the particle growth stage. Despite many investigations, there is disagreement as to the locus of particle nucleation (i) monomer-swollen emulsifier micelles (ii) ad-... [Pg.67]

Nevertheless micelles are normally present during Interval I of an emulsion polymerization in which latex particles are nucleated. Micellar nucleation of latex particles is dominant for monomers which have only a low solubility in water (e.g. styrene). For such a monomer any effect of micellar catalysis is likely to be revealed by an increase in the number of latex particles formed which would also result in an increased rate of polymerization. The thermal emulsion polymerization cited above seem to be a prima facie case of micellar catalysis. The thermal emulsion polymerization of styrene is investigated further here. [Pg.469]

Surfactants play a major role in the preparation of suspensions of polymer particles by heterogeneous nucleation. In emulsion polymerization, the monomer is emulsified in a nonsolvent (usually water) using a surfactant, whereas the initiator is dissolved in the continuous phase. The role of surfactants in this process is obvious since nucleation may occur in the swollen surfactant micelle. Indeed, the number of particles formed and their size depend on the nature of surfactant and its concentration (which determines the number of micelles formed). [Pg.513]

Instead of conventional surfactant molecules, amphiphilic water soluble macromonomers, especially PEO macromonomers, have been used extensively as a reactive emulsifier and as steric stabilizer polymer, as summarized in Table 5. Generally speaking, however, the mechanism for the particle nucleation in the emulsion polymerization systems using macromonomers has been poorly established when compared to the dispersion copolymerizations with macromonomers as mentioned earlier. [Pg.168]

The first interval is the interval of particle nucleation (interval I) and describes the process to reach an equilibrium radical concentration within every droplet formed during emulsification. The initiation process becomes more transparent when the rate of polymerization is transferred into the number of active radicals per particle n, which slowly increases to n 0.5. Therefore the start of the polymerization in each miniemulsion droplet is not simultaneous, so that the evolution of conversion in each droplet is different. Every miniemulsion droplet can be perceived as a separate nanoreactor, which does not interact with others. After having reached this averaged radical number, the polymerization kinetics is slowing down again and follows nicely an exponential kinetics as known for interval III in emulsion polymerization or for suspension polymer-... [Pg.91]

The process of miniemulsion allows in principle the use of all kinds of monomers for the formation of particles, which are not miscible with the continuous phase. In case of prevailing droplet nucleation or start of the polymer reaction in the droplet phase, each miniemulsion droplet can indeed be treated as a small nanoreactor. This enables a whole variety of polymerization reactions that lead to nanoparticles (much broader than in emulsion polymerization) as well as to the synthesis of nanoparticle hybrids, which were not accessible before. [Pg.95]

Polyacrylonitrile, which is a semicrystalline polymer, can be used for many engineering applications, such as fiber spinning or for housing and package applications. A peculiarity of polyacrylonitrile is that it is insoluble in its monomer. This makes it very difficult to homopolymerize acrylonitrile in an emulsion polymerization process since nucleated polymer particles cannot grow by monomer swelling. [Pg.99]

Keywords Emulsion polymerization Kinetics Particle nucleation Particle growth Molecular weight distribution Nonlinear polymers... [Pg.2]


See other pages where Emulsion polymerization nucleation is mentioned: [Pg.15]    [Pg.193]    [Pg.200]    [Pg.203]    [Pg.210]    [Pg.96]    [Pg.354]    [Pg.366]    [Pg.367]    [Pg.368]    [Pg.8]    [Pg.39]    [Pg.20]    [Pg.7]    [Pg.9]    [Pg.10]    [Pg.33]    [Pg.541]    [Pg.168]    [Pg.170]    [Pg.272]    [Pg.277]    [Pg.92]    [Pg.7]    [Pg.4]   
See also in sourсe #XX -- [ Pg.290 ]

See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Emulsion polymerization

Emulsion polymerization nucleation mechanisms

Emulsion polymerization particle nucleation

Emulsions, polymeric

Nucleation in emulsion polymerization

Nucleation polymerization

Particle nucleation in emulsion polymerization

Polymerization emulsion polymerizations

© 2024 chempedia.info