Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Miniemulsion/emulsion polymerization

There are four main types of liquid-phase heterogeneous free-radical polymerization microemulsion polymerization, emulsion polymerization, miniemulsion polymerization and dispersion polymerization, all of which can produce nano- to micron-sized polymeric particles. Emulsion polymerization is sometimes called macroemulsion polymerization. In recent years, these heterophase polymerization reactions have become more and more important... [Pg.3]

Dispersed polymers are also produced by inverse emulsion polymerization, miniemulsion polymerization, dispersion polymerization and microemulsion polymerization. [Pg.267]

Keywords emulsion polymerization miniemulsion polymerization reverse iodine transfer polymerization... [Pg.161]

Bulk or mass polymerization" Gas-phase pol3mierization Precipitation polymerization Suspension polymerization Microsuspension polymerization Dispersion polymerization Emulsion polymerization Miniemulsion polymerization Microemulsion polymerization... [Pg.3672]

Microemulsion and miniemulsion polymerization differ from emulsion polymerization in that the particle sizes are smaller (10-30 and 30-100 nm respectively vs 50-300 inn)4" and there is no monomer droplet phase. All monomer is in solution or in the particle phase. Initiation takes place by the same process as conventional emulsion polymerization. [Pg.64]

Microemulsion and miniemulsion polymerization processes differ from emulsion polymerization in that the particle sizes are smaller (10-30 and 30-100 nm respectively vs 50-300 ran)77 and there is no discrete monomer droplet phase. All monomer is in solution or in the particle phase. Initiation usually takes place by the same process as conventional emulsion polymerization. As particle sizes reduce, the probability of particle entry is lowered and so is the probability of radical-radical termination. This knowledge has been used to advantage in designing living polymerizations based on reversible chain transfer (e.g. RAFT, Section 9.5.2)." 2... [Pg.250]

Heterogeneous polymerization processes (emulsion, miniemulsion, non-aqueous dispersion) offer another possibility for reducing the rate of termination through what are known as compartmcntalization effects. In emulsion polymerization, it is believed that the mechanism for chain stoppage within the particles is not radical-radical termination but transfer to monomer (Section 5.2.1.5). These possibilities have provided impetus for the development ofliving heterogeneous polymerization (Sections 9.3.6.6, 9.4.3.2, 9.5.3.6). [Pg.455]

NMP of S in heterogeneous media is discussed in reviews by Qiu et at.,205 Cunningham,206 207 and Schork et a/.208 There have been several theoretical studies dealing with NMP and other living radical procedures in emulsion and miniemulsion."09 213 Butte et nr/.210 214 concluded that NMP (and ATRP) should be subject to marked retardation as a consequence of the persistent radical effect. Charlcux209 predicted enhanced polymerization rates for minicmulsion with small... [Pg.481]

Much has been written on RAFT polymerization under emulsion and miniemulsion conditions. Most work has focused on S polymerization,409-520 521 although polymerizations of BA,461 522 methacrylates382-409 and VAc471-472 have also been reported. The first communication on RAFT polymerization briefly mentioned the successful semi-batch emulsion polymerization of BMA with cumyl dithiobenzoate (175) to provide a polymer with a narrow molecular weight distribution.382 Additional examples and discussion of some of the important factors for successful use of RAFT polymerization in emulsion and miniemulsion were provided in a subsequent paper.409 Much research has shown that the success in RAFT emulsion polymerization depends strongly on the choice of RAFT agent and polymerization conditions.214-409-520027... [Pg.520]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

Miniemulsion polymerizations follow a different mechanism from the conventional (macroemulsion) emulsion polymerizations. Radicals generated in... [Pg.16]

Microemulsion polymerizations follow a different mechanism from the conventional emulsion polymerizations. The most probable locus of particle nucle-ation was suggested to be the microemulsion monomer droplets [27], although homogeneous nucleation was not completely ruled out. The particle generation rate in microemulsion polymerization is given by an expression similar to Eq. (21), which was used for the miniemulsion polymerization of styrene [28] ... [Pg.18]

The size of the monomer droplets plays the key role in determining the locus of particle nucleation in emulsion and miniemulsion polymerizations. The competitive position of monomer droplets for capture of free radicals during miniemulsion polymerization is enhanced by both the increase in total droplet surface area and the decrease in the available surfactant for micelle formation or stabilization of precursors in homogeneous nucleation. [Pg.20]

Research (Fontenot and Schork 1993a, b) indicates that miniemulsion polymerization can provide benefits over the current process technology of conventional emulsion polymerization. Among these are a process which is much more robust to contamination and operating errors, a more uniform copolymer composition when used for copolymerization, and a final product which is far more shear-stable than the product of conventional emulsion polymerization. [Pg.21]

In Fig. 8 the calorimetric curve of a typical miniemulsion polymerization for 100-nm droplets consisting of styrene as monomer and hexadecane as hydrophobe with initiation from the water phase is shown. Three distinguished intervals can be identified throughout the course of miniemulsion polymerization. According to Harkins definition for emulsion polymerization [59-61], only intervals I and III are found in the miniemulsion process. Additionally, interval IV describes a pronounced gel effect, the occurrence of which depends on the particle size. Similarly to microemulsions and some emulsion polymerization recipes [62], there is no interval II of constant reaction rate. This points to the fact that diffusion of monomer is in no phase of the reaction the rate-determining step. [Pg.91]

The first interval is the interval of particle nucleation (interval I) and describes the process to reach an equilibrium radical concentration within every droplet formed during emulsification. The initiation process becomes more transparent when the rate of polymerization is transferred into the number of active radicals per particle n, which slowly increases to n 0.5. Therefore the start of the polymerization in each miniemulsion droplet is not simultaneous, so that the evolution of conversion in each droplet is different. Every miniemulsion droplet can be perceived as a separate nanoreactor, which does not interact with others. After having reached this averaged radical number, the polymerization kinetics is slowing down again and follows nicely an exponential kinetics as known for interval III in emulsion polymerization or for suspension polymer-... [Pg.91]

The process of miniemulsion allows in principle the use of all kinds of monomers for the formation of particles, which are not miscible with the continuous phase. In case of prevailing droplet nucleation or start of the polymer reaction in the droplet phase, each miniemulsion droplet can indeed be treated as a small nanoreactor. This enables a whole variety of polymerization reactions that lead to nanoparticles (much broader than in emulsion polymerization) as well as to the synthesis of nanoparticle hybrids, which were not accessible before. [Pg.95]

As a model monomer for radical homopolymerization of hydrophobic monomers, styrene is described in many papers. The polymerization of acrylates and methacrylates is also well known. It could also be shown that the miniemulsion process also easily allows the polymerization of the ultrahydrophobic monomer lauryl methacrylate without any carrier materials as necessary in emulsion polymerization [71]. [Pg.95]

Any colloidal material provides an intrinsically favorable accessibility to its surface when compared to bulk material. Therefore, the availability of receptor binding sites should be facilitated by using colloidal MIPs. Submicron scale MIPs were prepared by precipitation polymerization, emulsion polymerization, and miniemulsion polymerization. Precipitation polymerization uses the insolubility of the formed polymer microgel in a certain solvent, whereas emulsion and miniemulsion polymerization employ two solvent phases for the preparation of the colloidal polymer. The latter methods offer the opportunity for tailoring the surface of the colloids exclusively, thereby enhancing the accessibility of the binding sites. Each of the three approaches has their own characteristics and will be described in the following sections. [Pg.128]

Abstract The subject of miniemulsion polymerization is reviewed. The approach taken is one that combines a review of the technology with historical and tutorial aspects. Rather than developing an absolutely exhaustive review, a tutorial approach has been taken, emphasizing the critical features and advantages of miniemulsion polymerization. In keeping with this tutorial approach, a discussion of conventional emulsion polymerization is included in order to be able to compare and contrast miniemulsion polymerization and conventional emulsion polymerization later in the review. Areas where miniemulsion polymerization has been adopted commercially, or where it is likely to be adopted are highlighted. [Pg.131]

If the monomer droplet size in a conventional emulsion polymerization can be reduced sufficiently (see below), the loci of polymerization become the monomer droplets. This system is referred to as a miniemulsion polymerization and will be discussed in detail below. The particle diameter will range from 50 to 500 nm. [Pg.134]

Miniemulsion polymerization began with a single paper [5]. Professor John Ugelstad of Norway was visiting John Vanderhoff in the Department of Chemistry at Lehigh University. Their discussions lead to speculation about the possibility of nucleation and polymerization in very fine monomer droplets during emulsion polymerization. Micellar nucleation is considered to be the... [Pg.136]

Mouran et al. [105] polymerized miniemulsions of methyl methacrylate with sodium lauryl sulfate as the surfactant and dodecyl mercaptan (DDM) as the costabilizer. The emulsions were of a droplet size range common to miniemulsions and exhibited long-term stability (of greater than three months). Results indicate that DDM retards Ostwald ripening and allows the production of stable miniemulsions. When these emulsions were initiated, particle formation occurred predominantly via monomer droplet nucleation. The rate of polymerization, monomer droplet size, polymer particle size, molecular weight of the polymer, and the effect of initiator concentration on the number of particles all varied systematically in ways that indicated predominant droplet nucleation. [Pg.155]

Wang et al. [98] carried out macroemulsion and mini emulsion polymerization of acrylic monomers in the presence of alkyd resins. Miniemulsion and macroemulsion polymers were produced using a commercial medium soya-linseed alkyd and a mix of acrylic monomers consisting of 50% BA, 49% MMA, and 1% acrylic acid (AA). PMMA polymer with a weight average molecular weight of 100,000 was used as the costabilizer. Alkyd levels were 5, 30, 60 or... [Pg.209]


See other pages where Miniemulsion/emulsion polymerization is mentioned: [Pg.367]    [Pg.160]    [Pg.458]    [Pg.256]    [Pg.213]    [Pg.367]    [Pg.160]    [Pg.458]    [Pg.256]    [Pg.213]    [Pg.508]    [Pg.368]    [Pg.603]    [Pg.20]    [Pg.20]    [Pg.75]    [Pg.94]    [Pg.134]    [Pg.142]    [Pg.53]    [Pg.4]    [Pg.33]    [Pg.61]    [Pg.135]    [Pg.137]    [Pg.151]    [Pg.157]    [Pg.176]    [Pg.209]    [Pg.213]   
See also in sourсe #XX -- [ Pg.367 ]

See also in sourсe #XX -- [ Pg.367 ]




SEARCH



Emulsion and Miniemulsion Polymerization

Emulsion polymerization

Emulsions miniemulsions

Emulsions, polymeric

Miniemulsion

Miniemulsion polymerization

Miniemulsions

Polymerization emulsion polymerizations

© 2024 chempedia.info