Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectroscopy excited state

The geometry changes which transition metal complexes undergo when excited electronic states are populated are determined by using a combination of electronic emission and absorption spectroscopy, pre-resonance Raman spectroscopy, excited state Raman spectroscopy, and time-dependent theory of molecular spectroscopy. [Pg.39]

A large number of experimental techniques have been used in studying flame chemistry, and all of these have been employed in flame ionization studies e.g., flame temperature profiles have been obtained with thermocouple probes excited species concentrations by emission spectroscopy ground-state free-radical or atomic concentrations by ESR and absorption spectroscopy and stable species profiles by means of small gas-sampling probes feeding directly to an analytical mass spectrometer. [Pg.323]

There are two fimdamental types of spectroscopic studies absorption and emission. In absorption spectroscopy an atom or molecule in a low-lying electronic state, usually the ground state, absorbs a photon to go to a higher state. In emission spectroscopy the atom or molecule is produced in a higher electronic state by some excitation process, and emits a photon in going to a lower state. In this section we will consider the traditional instrumentation for studying the resulting spectra. They define the quantities measured and set the standard for experimental data to be considered. [Pg.1120]

The interpretation of emission spectra is somewhat different but similar to that of absorption spectra. The intensity observed m a typical emission spectrum is a complicated fiinction of the excitation conditions which detennine the number of excited states produced, quenching processes which compete with emission, and the efficiency of the detection system. The quantities of theoretical interest which replace the integrated intensity of absorption spectroscopy are the rate constant for spontaneous emission and the related excited-state lifetime. [Pg.1131]

All the previous discussion in this chapter has been concerned with absorption or emission of a single photon. However, it is possible for an atom or molecule to absorb two or more photons simultaneously from a light beam to produce an excited state whose energy is the sum of the energies of the photons absorbed. This can happen even when there is no intemrediate stationary state of the system at the energy of one of the photons. The possibility was first demonstrated theoretically by Maria Goppert-Mayer in 1931 [29], but experimental observations had to await the development of the laser. Multiphoton spectroscopy is now a iisefiil technique [30, 31]. [Pg.1146]

A suitable method for a detailed investigation of stimulated emission and competing excited state absorption processes is the technique of transient absorption spectroscopy. Figure 10-2 shows a scheme of this technique. A strong femtosecond laser pulse (pump) is focused onto the sample. A second ultrashort laser pulse (probe) then interrogates the transmission changes due to the photoexcita-lions created by the pump pulse. The signal is recorded as a function of time delay between the two pulses. Therefore the dynamics of excited state absorption as... [Pg.169]

The use of emission (fluorescence and phosphorescence) as welt as absorption spectroscopy. From these spectra the presence of as well as the energy and lifetime of singlet and triplet excited states can often be calculated. [Pg.321]

Mossbauer effect spectroscopy, MES, Is based on the ability of certain nuclei to undergo recoilless emission and absorption ofY rays (16). The energy and multiplicity of the ground and excited states of a given nucleus are modified by the chemical environment. It Is thus most often necessary to compensate for the differences In... [Pg.539]

Knowledge on the plasma species can be obtained by the use of plasma diagnostics techniques, such as optical emission spectroscopy (OES) and mass spectroscopy (MS). Both techniques are able to probe atomic and molecular, neutral or ionized species present in plasmas. OES is based on measuring the light emission spectrum that arises from the relaxation of plasma species in excited energy states. MS, on the other hand, is generally based on the measurement of mass spectra of ground state species. [Pg.236]

For nuclear y-resonance absorption to occur, the y-radiation must be emitted by source nuclei of the same isotope as those to be explored in the absorber. This is usually a stable isotope. To obtain such nuclei in the desired excited meta-stable state for y-emission in the source, a long-living radioactive parent isotope is used, the decay of which passes through the Mossbauer level. Figure 3.6a shows such a transition cascade for Co, the y-source for Fe spectroscopy. The isotope has a half-life time //2 of 270 days and decays by K-capmre, yielding Fe in the 136 keV excited state ( Co nuclei capmre an electron from the K-shell which reduces the... [Pg.34]

Seminal studies on the dynamics of proton transfer in the triplet manifold have been performed on HBO [109]. It was found that in the triplet states of HBO, the proton transfer between the enol and keto tautomers is reversible because the two (enol and keto) triplet states are accidentally isoenergetic. In addition, the rate constant is as slow as milliseconds at 100 K. The results of much slower proton transfer dynamics in the triplet manifold are consistent with the earlier summarization of ESIPT molecules. Based on the steady-state absorption and emission spectroscopy, the changes of pKa between the ground and excited states, and hence the thermodynamics of ESIPT, can be deduced by a Forster cycle [65]. Accordingly, compared to the pKa in the ground state, the decrease of pKa in the... [Pg.244]

Koti ASR, Krishna MMG, Periasamy N (2001) Time-resolved area-normalized emission spectroscopy (TRANES) a novel method for confirming emission from two excited states. J Phys Chem A 105(10) 1767-1771... [Pg.330]

IR emission spectroscopy makes use of the reciprocal effect of IR absorption spectroscopy. At temperatures above 0 °K, molecules undergo a number of vibrational, vibrational-rotational or purely rotational movements. The relaxation of these excited states leads to the emission of thermal radiation, primarily in the IR region. [Pg.124]

We have reported the first direct observation of the vibrational spectrum of an electronically excited state of a metal complex in solution (40). The excited state observed was the emissive and photochemically active metal-to-ligand charge transfer (MLCT) state of Ru(bpy)g+, the vibrational spectrum of which was acquired by time-resolved resonance Raman (TR ) spectroscopy. This study and others (19,41,42) demonstrates the enormous, virtually unique utility of TR in structural elucidation of electronically excited states in solution. 2+... [Pg.476]


See other pages where Emission spectroscopy excited state is mentioned: [Pg.640]    [Pg.71]    [Pg.744]    [Pg.71]    [Pg.156]    [Pg.248]    [Pg.873]    [Pg.1120]    [Pg.1142]    [Pg.1591]    [Pg.2447]    [Pg.446]    [Pg.65]    [Pg.281]    [Pg.95]    [Pg.147]    [Pg.148]    [Pg.457]    [Pg.486]    [Pg.779]    [Pg.781]    [Pg.783]    [Pg.69]    [Pg.275]    [Pg.3]    [Pg.217]    [Pg.8]    [Pg.324]    [Pg.398]    [Pg.501]    [Pg.184]    [Pg.589]    [Pg.10]    [Pg.124]    [Pg.101]    [Pg.456]    [Pg.44]   
See also in sourсe #XX -- [ Pg.35 , Pg.434 ]




SEARCH



Emission spectroscopy)

Excitation Spectroscopy

Excited states spectroscopy

© 2024 chempedia.info