Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectroscopic measurements

Most optical detection methods for biosensors are based on ultra-violet (UV) absorption spectrometry, emission spectroscopic measurement of fluorescence and luminescence, and Raman spectroscopy. However, surface plasmon resonance (SPR) has quickly been widely adopted as a nonlabeling technique that provides attractive advantages. Fueled by numerous new nanomateiials, their unique, SPR-based or related detection techniques are increasingly being investigated [28-31]. [Pg.120]

Many researchers have studied the intrinsic fluorescent properties of humic substances and DOM as a means of obtaining information relating to structural characteristics and origin [39-49]. Simple excitation and emission spectroscopic measurements provide limited discrimination among various humic fractions, identifying only broad classes of humics and fulvics. Other fluorescence techniques have been appUed in attempts to improve differentiation, specifically synchronous fluorescence spectroscopy [43,47] and total luminescence... [Pg.6]

Chemical interferences occur both in flame emission and atomic absorption. This occurs whenever some chemical reaction changes the concentration of the ground state analyte element in the flame. Reference to Chapter 9, Figure 9-10, shows processes that occur in the flame that affect both atomic absorption and flame emission spectroscopic measurements. If the analyte element can form stable oxides or hydroxides, some of the ground state atoms of the element are not available for absorption of energy. The result is an absorption signal of decreased intensity thus oxide formation removes ground state atoms from the flame. [Pg.287]

The identification of anionic polyfacrylic acid) sizes can be carried out by staining with a fluorescent cationic dye (Cl Basic Orange 14) followed by spectroscopic measurement of excitation wavelength and fluorescence emission [195,196]. Such methods can also be used (with Cl Basic Orange 14 or Cl Basic Red 1) to detect and estimate carboxymethylcellulose, poly(vinyl alcohol) and starch derivatives [197]. [Pg.109]

A still more complicated reaction is the chemiluminescent oxidation of sodium hydrogen sulfide, cysteine, and gluthathione by oxygen in the presence of heavy metal catalysts, especially copper ions 60>. When copper is used in the form of the tetrammin complex Cu(NH3) +, the chemiluminescence is due to excited-singlet oxygen when the catalyst is copper flavin mononucleotide (Cu—FMN), additional emission occurs from excited flavin mononucleotide. From absorption spectroscopic measurements J. Stauff and F. Nimmerfall60> concluded that the first reaction step consists in the addition of oxygen to the copper complex ... [Pg.79]

In spite of the development of physicochemical techniques for surface analysis, spectroscopic methods applicable to the study of bonding between adsorbed metal ion species and substrate are limited, especially those applicable to in situ measurement at interfaces between solid and aqueous phases (1,2). In previous papers, we showed that emission Mossbauer measurement is useful in clarifying the chemical bonding environment of dilute metal ions adsorbed on magnetic metal oxide surfaces (3,1 ) ... [Pg.403]

In situ emission Mossbauer spectroscopic measurement of the hyper-fine magnetic fields on trivalent Fe-57 and tetravalent Sn-119 arising from divalent Co-57 and pentavalent Sb—119, respectively, yields valuable information on the chemical structure of adsorbed metal ions at the interface between hematite and an aqueous solution. [Pg.423]

Conventional absorptiometric and fluorimetric pH indicators show a shift of band positions in absorption and emission spectra between the protonated and deprotonated forms. This feature allows the spectroscopic measurement of the acid dissociation constant in the ground state, Ka, and also the evaluation of the dissociation constant in the excited state, Ka (Eq. (5.5)), from the Forster cycle under the assumption of equivalent entropies of reaction in the two states.<109 112)... [Pg.127]

Elemental composition H 1.56%, Te 98.44%. The gas is identified by its physical properties and measured by chemical analysis. Two most confirmatory methods recommended here are (1) GC/MS, the characteristic mass ions should be in the range 126 to 132, and (2) furnace-AA or ICP emission spectroscopic analysis for metalic tellurium. For the AA analysis, hydrogen telluride gas should be passed through water and the solution acidified and analyzed for tellurim. Hydrogen may be measured by the classical combustion method involving oxidation to form water, followed by gravimetry. [Pg.384]

Elements and molecules emit and absorb photons with characteristic energies. As a result, measurements of stars, comets, or other luminous bodies with a spectrograph, which permits the output to be measured as a function of wavelength, reveal numerous emission or absorption lines (Fig. 4.1). These lines can be used to infer the compositions of the objects. The first spectroscopic measurements of the Sun, stars, and other luminous objects were made in the last half of the nineteenth century. However, it wasn t until the late 1920s that relatively accurate elemental abundances for the Sun and the stars were determined (see Box 4.1). [Pg.88]

Thus, it must be concluded that TDH measurements lead to more reliable values of activation energy than DLTS. This statement is also true with respect to PITS and OTCS data, as seen in Table III. However, it can be expected that emission-spectroscopic inconsistencies will be gradually eliminated as more work is carried out. [Pg.123]

The discrepancy may be explained, as well, by the different systems investigated in emission (Cs2TeCl6) and absorption (K2SnCl6 Te4+) or, more general, by the deficiencies of the theoretical models for calculating band profiles which are probably more serious for the analysis of the absorption spectrum. However, it can be concluded that the results obtained from different theoretical procedures, which are applied on different spectroscopical measurements, agree quite well in view of the approximations used. [Pg.95]

Based on direct spectroscopic measurements of OH radical concentrations at close to ground level, peak daytime OH radical concentrations are typically (3-10) x 106 molecule cm-3 (see, for example, Brauers et al., 1996 Mather et al., 1997 Mount et al., 1997). A diur-nally, seasonally, and annually averaged global tropospheric OH radical concentration has been derived from the emissions, atmosphere concentrations, and OH radical reaction rate constant for methyl chloroform (CH3CC13), resulting in a 24-hr average OH radical concentration of 9.7 x 10s molecule cm 3 (Prinn et al., 1995). [Pg.362]

In general, a thorough spectroscopic study, as routinely carried out in the group of Prof. Dr. Dirk M. Guldi by means of steady-state emission/absorption measurements and time-resolved techniques in numerous solvents, sheds light onto the photophysical processes following photoexcitation of these systems. Equally, a detailed description of the employed spectroscopic methods will be given in the next sections. [Pg.69]

In Fig. 5, the schematic diagram of the ion beam pulse radiolysis system with an optical emission spectroscope is also shown. The emission produced by the pulsed ion beam impact is detected through a monochromator by a fast photomultiplier tube (PMT) operated in a counting mode. The time profile of the emission is obtained by a coincident measurement between a photon and a... [Pg.107]

The diffusion coefficient may be measured via several experimental techniques. The most prominent ones at present are the direct observation of a diffusion boundary in either a field electron microscope [159, 160] or a photoelectron emission microscope [158] or via laser desorption experiments [161, 162], In the latter case a short laser pulse is used to heat the surface to momentarily desorb the adsorbate from a well defined region of the crystal. Subsequent laser pulses with well defined time delays with respect to the first one, and measurement of the number of particles leaving the surface, allow one to determine the rate of diffusion into the depicted zone. Other methods to determine surface diffusion are spectroscopic measurements which cover the proper time window, for example magnetic resonance-based methods [163, 164]. In favorable cases these methods may even be applied to single crystal surfaces [165],... [Pg.288]

Activated chemiluminescence is observed from these secondary peroxy-esters as well. When the thermolysis of peroxyacetate [281 in benzene solution is carried out in the presence of a small amount of an easily oxidized substance the course of the reaction is changed. For example, addition of N,N-dimethyldihydrodibenzol[ac]phenazine (DMAC) to peroxyester [28] in benzene accelerates the rate of reaction and causes the generation of a modest yield of singlet excited DMAC. This is evidenced by the chemiluminescence emission spectrum which is identical to the fluorescence spectrum of DMAC obtained under similar conditions. Spectroscopic measurements indicate that the DMAC is not consumed in its reaction with peroxyester 28 even when the peroxyester is present in thirty-fold excess. The products of the reaction in the presence of DMAC remain acetophenone and acetic acid. These observations indicate that DMAC is a true catalyst for the reaction of peroxyacetate 28. The results of these experiments with DMAC, plotted according to (27) give k2 = 9.73 x 10-2 M-1 s-1. [Pg.227]

V vs. SCE), reductive quenching of the excited complexes by the appended indole ( ,0[indole+,°] < +1.06 V vs. SCE) is favoured by > 0.2-0.4 eV. From this, together with results from transient absorption spectroscopic measurements, it is concluded that the emission quenching of the indole-containing complexes is a result of electron-transfer. The interactions of these rhenium(I) indole complexes with... [Pg.134]


See other pages where Emission spectroscopic measurements is mentioned: [Pg.15]    [Pg.502]    [Pg.507]    [Pg.2454]    [Pg.331]    [Pg.209]    [Pg.211]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.219]    [Pg.221]    [Pg.15]    [Pg.502]    [Pg.507]    [Pg.2454]    [Pg.331]    [Pg.209]    [Pg.211]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.219]    [Pg.221]    [Pg.2966]    [Pg.37]    [Pg.94]    [Pg.72]    [Pg.3]    [Pg.16]    [Pg.21]    [Pg.181]    [Pg.393]    [Pg.16]    [Pg.58]    [Pg.95]    [Pg.68]    [Pg.45]    [Pg.100]    [Pg.210]    [Pg.202]    [Pg.209]    [Pg.256]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Spectroscopic measurements

Spectroscopical Measurements

© 2024 chempedia.info