Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elution organic solvent

Research has shown that ascorbic acid can be produced from hulls of immature walnuts by extracting the hull with 0.2% sulfur dioxide solutions, and purifyiag the extract by adsorption on and elution from anion-exchange resias (see Ion exchange). Eluates from the anion-exchange step are concentrated, purified by organic solvent fractionations, decolorized, and crystallized (35). [Pg.277]

TSK-GEL SW columns allow use of elution buffers comprised completely of water-soluble organic solvents, whereas the TSK-GEL PW packings limit organic cosolvent use to a maximum of 50%. [Pg.134]

Styragel columns can be used in a wide range of organic solvents. Elution protocols have been worked out for all polymers that are soluble in organic... [Pg.340]

The characteristics of the sorbent in the precolumn may lead to problems when coupling the two systems. Therefore, when the analytes are more retained in the precolumn than in the analytical column, peak broadening may appear, even when the analytes are eluted in the backflush mode (40). This has been solved with a special design in which the analytes retained in the precolumn are eluted with only the organic solvent of the mobile phase and the corresponding mobile phase is subsequently formed (40, 41). [Pg.345]

These small columns,(usually 10 mm X 1-4.6 mm i.d.) are normally packed with 10-40 p.m sorbents such as Cig-bonded silica, Cg-bonded silica or styrene-divinylbenzene copolymer. These sorbents are not very selective and more selective sorbents, such as the immunosorbent (94), have also been used with good results. Coupling of SPE-gas chromatography is in fact the one most often used in environmental analysis because it reaches a high level of trace enrichment, eliminates water and elutes retained compounds easily with an organic solvent that can be injected into the gas chromatograph. [Pg.361]

Preparation of cholesta-5,7-diene-ia,3/3-diol a solution of 500 mg of the 1,4-cyclized adduct of cholesta-5,7-dien-3/3-ol-ia,2a-epoxideand 4-phenyl-1,2,4-triazoline-3,5-dione in 40 ml of tetrahydrofuran is added dropwise under agitation to a solution of 600 mg of lithium aluminum hydride in 30 ml of THF. Then, the reaction mixture liquid Is gently refluxed and boiled for 1 hour and cooled, and a saturated aqueous solution of sodium sulfate is added to the reaction mixture to decompose excessive lithium aluminum hydride. The organic solvent layer is separated and dried, and the solvent Is distilled. The residue Is purified by chromatography using a column packed with silica gel. Fractions eluted with ether-hexane (7 3 v/v) are collected, and recrystallization from the methanol gives 400 mg of cholesta-5,7-diene-la, 3/3-diol. [Pg.36]

Reverse phase chromatography is finding increasing use in modern LC. For example, steroids (42) and fat soluble vitamins (43) are appropriately separated by this mode. Reverse phase with a chemically bonded stationary phase is popular because mobile phase conditions can be quickly found which produce reasonable retention. (In reverse phase LC the mobile phase is typically a water-organic solvent mixture.) Rapid solvent changeover also allows easy operation in gradient elution. Many examples of reverse phase separations can be found in the literature of the various instrument companies. [Pg.240]

Capillary electrophoresis (CE) has several unique advantages compared to HPLC, snch as higher efficiency dne to non-parabolic fronting, shorter analytical time, prodnction of no or much smaller amounts of organic solvents, and lower cost for capillary zone electrophoresis (CZE) and fused-silica capillary techniques. However, in CZE, the most popular separation mode for CE, the analytes are separated on the basis of differences in charge and molecular sizes, and therefore neutral compounds snch as carotenoids do not migrate and all co-elute with the electro-osmotic flow. [Pg.463]

Products from the reactions are collected on Tenax cartridges, and the analytes desorbed by heating, or on polyurethane form plugs from which the analytes can be recovered by elution with a suitable organic solvent. [Pg.246]

The organic solvent used to elute the compound must be adequately strong (polar for the adsorbent silica gel) and a good solvent for the component. Absolute methanol should be avoided as a siugle solvent because silica gel itself and some of its common impurities (Fe, Na, SO4) are soluble iu this solvent and will contaminate the isolated material. Solvent containing less than 30% methanol is recommended, or ethanol, acetone, chloroform, dichloromethane, or the mobile phase originally used for PLC are other frequently nsed choices for solnte recovery. Water is not recommended because it is so difficult to remove by evaporation during the concentration step (removal by lyophilization is necessary). A formula that has been used to calculate the volume of solvent needed when the PLC mobile phase is chosen for elution is ... [Pg.184]

Dry the organic solvent layer through 80 g of anhydrous sodium sulfate on a glass funnel and collect the dried solution in a 300-mL round-bottom flask. Evaporate the solvent under reduced pressure. Dissolve the residue in 150 mL of n-hexane and transfer the solution into a 300-mL separatory funnel. Extract twice with 100 mL of acetonitrile. Combine the acetonitrile extracts in a 500-mL round-bottom flask and evaporate the solvent under reduced pressure. Dissolve the residue in a small amount of column-eluting solvent (dichloromethane-n-hexane, 1 1, v/v) and transfer the solution to the top of the silica gel column. After eluting the column with 60 mL of solvent of the same composition (discard), elute orbencarb and I with 150mL of dichloromethane. Collect the eluate in a 300-mL flask and evaporate the solvent under reduced pressure. Dissolve the residue in an appropriate volume of acetone for analysis. [Pg.522]

Law and Goerlitz in 1970 reported the effective removal of co-extractives from water using microcolumns of these three adsorbents for the analysis of chlorinated pesticides. The development of polystyrene resins such as XAD increased the ability to concentrate pesticide residues from water. Large volumes of sample water could be passed through an XAD resin and the pesticide would adsorb on the resin. Elution of the pesticide by an organic solvent such as methanol and subsequent cleanup by the adsorbent materials became the industry standard. [Pg.821]

This technique is based on the same separation mechanisms as found in liquid chromatography (LC). In LC, the solubility and the functional group interaction of sample, sorbent, and solvent are optimized to effect separation. In SPE, these interactions are optimized to effect retention or elution. Polar stationary phases, such as silica gel, Florisil and alumina, retain compounds with polar functional group (e.g., phenols, humic acids, and amines). A nonpolar organic solvent (e.g. hexane, dichloromethane) is used to remove nonpolar inferences where the target analyte is a polar compound. Conversely, the same nonpolar solvent may be used to elute a nonpolar analyte, leaving polar inferences adsorbed on the column. [Pg.877]


See other pages where Elution organic solvent is mentioned: [Pg.178]    [Pg.178]    [Pg.233]    [Pg.2063]    [Pg.2063]    [Pg.24]    [Pg.116]    [Pg.120]    [Pg.258]    [Pg.259]    [Pg.259]    [Pg.568]    [Pg.31]    [Pg.31]    [Pg.361]    [Pg.213]    [Pg.301]    [Pg.217]    [Pg.150]    [Pg.167]    [Pg.493]    [Pg.10]    [Pg.12]    [Pg.251]    [Pg.24]    [Pg.67]    [Pg.208]    [Pg.433]    [Pg.204]    [Pg.339]    [Pg.79]    [Pg.81]    [Pg.330]    [Pg.431]    [Pg.436]    [Pg.760]    [Pg.822]    [Pg.832]    [Pg.1130]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Elution solvent

Solvents eluting

© 2024 chempedia.info