Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination of HX

The title transformation is a well-known one that has been applied to the synthesis of a variety of compounds including prostaglandins, vitamin A, and polyenes. Because typical organic bases such as Et3N, DMAP, pyridine, and quinoline are often unsatisfactory for such reactions, DBN and DBU have been employed [Pg.19]


Hydrazoyl halides are useful reagents for the synthesis of pyrazolines and pyrazoles (80JHC833). The elimination of HX, usually with triethylamine, is now the preferred method for the generation of the nitrilimine (621) in situ. Although in some cases it is not clear if the mechanism involves a nitrilimine (621) (as for example in the Fusco method in which sodium salts of /3-diketones are used), in other reactions it is the most reasonable possibility. For example, the synthesis of pyrazolobenzoxazine (633) from the hydrazoyl halide (631) probably occurs via the nitrilimine (632). Trifluoromethylpyrazoles (634) have been prepared by the reaction of a hydrazoyl halide and an alkynic compound in the presence of triethylamine (82H(19)179). [Pg.284]

With a,p-dihalo- or a-halo-a,p-unsaturated carbonyl derivatives A significant number of examples exist in which a,P-dihalogenated carbonyl derivatives undergo reactions with thioglycolates in the presence of base to produce thiophenes. " The reactions have been shown to occur through intermediate a-halo-a,P-unsaturated carbonyl derivatives produced by the elimination of HX. Thus the use of a-halo-a,P unsaturated carbonyl systems in place of the a,P-dihalocarbonyl compounds was found to efficiently provide thiophenes upon reaction with thioglycolates. In a modification of the work of Fiesselmann, readily accessible methyl-2-chloroacrylate 23 and 2-chloroacrylonitrile 24 have been used in this sense to provide 25 and 26, respectively. [Pg.188]

Flash vacuum thermolysis (FVT) of 2-substituted 4//-pyrido[l,2-n]pyrimidin-4-ones 126 above 800 °C afforded (2-pyridyl)iminopropadie-none (130) (99JCS(P2)1087). These reactions were interpreted in terms of reversible ring opening of 4//-pyrido[l,2-n]pyrimidin-4-ones to imidoyl-ketenes 127. A 1,5-H shift in 127 generated the N(l)H-tautomeric methylene ketene 128, in which facile elimination of HX took place via a six-membered cyclic transition state 129 to yield 130. In the case of 2-methoxy derivative 126 (X = OMe) another competing pathway was also identified at lower temperature, which resulted in the formation C3O2 and 2-methylaminopyr-idine via mesoionic isomer 131 (Scheme 9). The products were identified by IR spectroscopy. [Pg.202]

It is a reaction of wide scope both the phosphite 1 and the alkyl halide 2 can be varied. Most often used are primary alkyl halides iodides react better than chlorides or bromides. With secondary alkyl halides side reactions such as elimination of HX can be observed. Aryl halides are unreactive. [Pg.15]

The reaction works well with primary alkyl halides, especially with allylic and benzylic halides, as well as other alkyl derivatives with good leaving groups. Secondary alkyl halides give poor yields. Tertiary alkyl halides react under the usual reaction conditions by elimination of HX only. Nitriles from tertiary alkyl halides can however be obtained by reaction with trimethylsilyl cyanide 4 ... [Pg.185]

Alkynes can be prepared by the elimination of HX from alkyl halides in much the same manner as alkenes (Section 7.1). Treatment of a 1,2-dihaloaJkane (a vicinal dihalide) with excess strong base such as KOH or NaNH2 results in a twofold elimination of HX and formation of an alkyne. As with the elimination of HX to form an alkene, we ll defer a discussion of the mechanism until Chapter 11. [Pg.261]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one sp-sp a bond and two p-p tt bonds. There are relatively few general methods of alkyne synthesis. Two good ones are the alkylation of an acetylide anion with a primary-alkyl halide and the twofold elimination of HX from a vicinal dihalide. [Pg.279]

We saw in the preceding chapter that the carbon-ha]ogen bond in an alkyl halide is polar and that the carbon atom is electron-poor. Thus, alkyl halides are electrophiles, and much of their chemistry involves polar reactions with nucleophiles and bases. Alkyl halides do one of two things when they react with a nucleophile/base, such as hydroxide ion either they undergo substitution of the X group by the nucleophile, or they undergo elimination of HX to yield an alkene. [Pg.359]

Nucleophile The nucleophile must be nonbasic to prevent a competitive elimination of HX (Section 11.7), but otherwise does not affect the reaction rate. Neutral nucleophiles work well. [Pg.380]

We said at the beginning of this chapter that two kinds of reactions can happen when a nucleophile/Lewis base reacts with an alkyl halide. The nucleophile can either substitute for the halide by reaction at carbon or cause elimination of HX by reaction at a neighboring hydrogen ... [Pg.383]

In the elimination of HX from an alkyl halide, the more highly substituted alkene product predominates. [Pg.384]

Conjugated dienes can be prepared by some of the methods previously discussed for preparing alkenes (Sections 11.7-11.10). The base-induced elimination of HX from an allylic halide is one such reaction. [Pg.483]

Halobenzenes undergo nucleophilic aromatic substitution through either of two mechanisms. If the halobenzene has a strongly electron-withdrawing substituent in the ortho or para position, substitution occurs by addition of a nucleophile to the ring, followed by elimination of halide from the intermediate anion. If the halobenzene is not activated by an electron-withdrawing substituent, substitution can occur by elimination of HX to give a benzyne, followed by addition of a nucleophile. [Pg.587]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

A very interesting approach to optically active sulphoxides, based on a kinetic resolution in a Pummerer-type reaction with optically active a-phenylbutyric acid chloride 269 in the presence of /V,A -dimethyIaniline, was reported by Juge and Kagan332 (equation 149). In contrast to the asymmetric reductions discussed above, this procedure afforded the recovered sulphoxides in optical yields up to 70%. Chiral a, /1-unsaturated sulphoxides 270 were prepared via a kinetic resolution elaborated by Marchese and coworkers333. They found that elimination of HX from racemic /i-halogenosulphoxides 271 in the presence of chiral tertiary amines takes place in an asymmetric way leading to both sulphoxides 270 and 271, which are optically active (optical yields up to 20%) with opposite configurations at sulphur (equation 150). [Pg.296]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

CM products from vinylhalides are highly desirable especially because of the possible use in metal catalysed coupling reactions. Johnson and co-workers, performed detailed studies of the possible deactivation pathways [161]. The Fischer-carbene complexes of the vinyl halides have an increased stabihty compared to their alkylidene counterparts and the Fischer carbenes may be deactivated either by migration of the phosphine or by elimination of HX leading to a carbide. [Pg.94]

A range of a-functionalised aldehydes have been used to generate acylazolium species via the corresponding enol intermediate. For example, addition of an NHC to an a-halo aldehyde 84 presumably generates the Breslow species 86, with elimination of HX to afford the enol 87. Subsequent in situ tautomerisation generates... [Pg.271]

The elimination of HX(X = SOCH3, SCHj) from the [M-STol]- and [MH-HSTol] cations (Tol = CHjCgH ) from 5-9 under electron impact and chemical ionization depends strongly on the spatial orientation of the vicinal substituents . The intensity of the [M — STol] ion is appreciably higher when X and Y are cis than when they are trans. The stereochemistry of the sulfoxide group is not important since 7 and 8 exhibit very similar spectra. The elimination of HSOCHj occurs more easily from 7 and 8... [Pg.126]

Typical VNS consists of a reaction between a nitroarene such as nitrobenzene and a carbanion containing a leaving group X at the carbanionic center. In the first step, addition of the carbanion to the nitroarene results in the formation of o-adduct, which undergoes P-elimination of HX to form the nitrobenzylic carbanion, which is subsequently protonated during the work-up procedure (Scheme 9.7). [Pg.311]

Cyclization arising from the intramolecular photoelimination of HC1, HBr, and HI has been extensively used in the synthesis of heterocycles and alkaloids. The mechanisms of these transformations have not in many cases been thoroughly investigated. Some undoubtedly are initiated by simple homolysis of the carbon-halogen bond whereas others involve photocycliza-tion and subsequent elimination of HX. [Pg.297]

Whereas enyne 429 is formed in excellent yield from allenyl sulfone 428 as a stable product of 1,4-elimination of water [118], short-lived butatrienones 431 can only be characterized by argon matrix infrared spectroscopy after 1,2-elimination of HX from precursors 430 by flash vacuum pyrolysis [373, 374]. [Pg.415]

Eliminations from cyclic compounds are more sensitive to the crown-ether effect. Potassium t-butoxide-promoted elimination of HX from [178] gives the cis- and trans-isomers of [179] and [180] (36), the cis isomers being formed... [Pg.352]

Cyclic ketene acetals, which have utility as co-polymers with functional groups capable of cross-linking, etc., have been prepared by the elimination of HX from 2-halomethyl-l,3-dioxolanes. Milder conditions are used under phase-transfer conditions, compared with traditional procedures, which require a strong base and high temperatures. Solid liquid elimination reactions frequently use potassium f-butoxide [27], but acceptable yields have been achieved with potassium hydroxide and without loss of any chiral centres. The added dimension of sonication reduces reaction times and improves the yields [28, 29]. Microwave irradiation has also been used in the synthesis of methyleneacetals and dithioacetals [30] and yields are superior to those obtained with sonofication. [Pg.394]

Oxidative additions involving C-H bond breaking have recently been the topic of an extensive study, usually referred to as C-H activation the idea is that the M-H and M-hydrocarbyl bonds formed will be much more prone to functionalization than the unreactive C-H bond. Intramolecular oxidative additions of C-H bonds have been known for quite some time see Figure 2.15. This process is named orthometallation or cyclometallation. It occurs frequently in metal complexes, and is not restricted to "ortho" protons. It is referred to as cyclometallation and is often followed by elimination of HX, while the metal returns to its initial (lower) oxidation state. [Pg.38]

Pyrimidines (237) react to give monoadducts but in the case of pyrazines (238) the monoadducts proved to be highly reactive to further cycloaddition (134). The 5-substituted pyridazinones (239) (X=EtS02, I, pyrrolidino. Cl) undergo cycloaddition to the C=C bond as shown followed by elimination of HX to give fused pyrazoles (135). [Pg.509]

Elimination of HX from an alkane or cycloalkane typically follows an E2 mechanism and occurs with anti stereochemistry, e.g., elimination of HCl from chlorocyclohexane. ... [Pg.481]

Dehydrohalogenations (elimination of HX) can in turn be effected by passing the halide over a solid base such as vacuum-dried hot KOH or f-BuOK adsorbed on some carrier material. Recently, Billups et al. showed that elimination of Mc3SiBr may even be effected at room temperature over solid CsF. Several very interesting strained alkenes have been generated by such techniques, but although these techniques would lend themselves very well for interfacing to matrix isolation we know of no example where this has been achieved. [Pg.825]


See other pages where Elimination of HX is mentioned: [Pg.79]    [Pg.108]    [Pg.311]    [Pg.568]    [Pg.126]    [Pg.1337]    [Pg.194]    [Pg.193]    [Pg.88]    [Pg.170]    [Pg.644]    [Pg.351]    [Pg.353]    [Pg.354]    [Pg.111]    [Pg.389]    [Pg.389]    [Pg.43]    [Pg.525]   


SEARCH



Elimination of HX (X F, Cl, Br, I) from Alkyl and Alkenyl Halides

HX elimination

© 2024 chempedia.info