Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kidney elimination

Elimination Kidney Mainly kidney Liver Liver Liver + kidney Liver Kidney... [Pg.688]

Traditional Medicine. Used since ancient times in Egypt to treat hypertension and to eliminate kidney stones, and in Europe as a tonic, stomachic, febrifuge, and sedative. Used in lotions to remove freckles, spots, and other skin blemishes and in treating cancers. [Pg.168]

Excretion factors are often related to lipophilicity. More lipophilic compounds tend to be excreted by the Hver into the bile, resulting in elimination ultimately in the feces. As this is a relatively slow process, much of the radioactivity having a shorter half-life decays before being eliminated. Polar compounds are more likely to be excreted by the kidneys. [Pg.473]

Thorotrast (colloidal Th02) was once used as a radiopaque agent in medicine (see Radiopaques). Its injection in a dose of 2.0—15.0 g caused rises in body temperature, nausea, and injury to tissues at the injection site, followed by anemia, leukopenia, and impairment of the reticuloendothehal system. After intravenous adrninistration, thorotrast particles are taken up by reticuloendothehal cells of the fiver and spleen. Thorotrast is virtually not eliminated from the body (91). Between 1947 and 1961, 33 cases of cancer of the fiver, larynx, and bronchi and sarcoma of the kidneys, developing from 6 to 24 years after thorotrast administering, have been described in the literature (92). [Pg.44]

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

The kidney is an important organ for the excretion of toxic materials and their metaboHtes, and measurement of these substances in urine may provide a convenient basis for monitoring the exposure of an individual to the parent compound in his or her immediate environment. The Hver has as one of its functions the metaboHsm of foreign compounds some pathways result in detoxification and others in metaboHc activation. Also, the Hver may serve as a route of elimination of toxic materials by excretion in bile. In addition to the Hver (bile) and kidney (urine) as routes of excretion, the lung may act as a route of elimination for volatile compounds. The excretion of materials in sweat, hair, and nails is usually insignificant. [Pg.231]

Studies show that the main sites of uranium deposition ate the renal cortex and the Hvet (8). Uranium is also stored in bones deposition in soft tissues is almost negligible. Utanium(VI) is deposited mostly in the kidneys and eliminated with the urine whereas, tetravalent uranium is preferentially deposited in the Hvet and eliminated in the feces. The elimination of uranium absorbed into the blood occurs via the kidneys in urine, and most, - 84%, of it is cleared within 4 to 24 hours (8). [Pg.336]

Disopyr mide. Disopyramide phosphate, a phenylacetamide analogue, is a racemic mixture. The dmg can be adininistered po or iv and is useful in the treatment of ventricular and supraventricular arrhythmias (1,2). After po administration, absorption is rapid and nearly complete (83%). Binding to plasma protein is concentration-dependent (35—95%), but at therapeutic concentrations of 2—4 lg/mL, about 50% is protein-bound. Peak plasma concentrations are achieved in 0.5—3 h. The dmg is metabolized in the fiver to a mono-AJ-dealkylated product that has antiarrhythmic activity. The elimination half-life of the dmg is 4—10 h. About 80% of the dose is excreted by the kidneys, 50% is unchanged and 50% as metabolites 15% is excreted into the bile (1,2). [Pg.113]

Time to peak plasma concentration depends on the rate of IV dosing but is usually achieved in 45—90 seconds. Therapeutic plasma concentrations are 1.5—5.0 )J.g/mL, and concentrations above 5 )J.g/mL maybe toxic. The elimination half-life after a bolus iv dose is 8 min the elimination half-life after a 24 h iv infusion is about 100 min. The dmg is eliminated by the kidneys. Ten percent is unchanged and the remainder is in the form of inactive metabolites... [Pg.113]

Tocainide is rapidly and well absorbed from the GI tract and undergoes very fitde hepatic first-pass metabolism. Unlike lidocaine which is - 30% bioavailable, tocainide s availability approaches 100% of the administered dose. Eood delays absorption and decreases plasma levels but does not affect bio availability. Less than 10% of the dmg is bound to plasma proteins. Therapeutic plasma concentrations are 3—9 jig/mL. Toxic plasma levels are >10 fig/mL. Peak plasma concentrations are achieved in 0.5—2 h. About 30—40% of tocainide is metabolized in the fiver by deamination and glucuronidation to inactive metabolites. The metabolism is stereoselective and the steady-state plasma concentration of the (3)-(—) enantiomer is about four times that of the (R)-(+) enantiomer. About 50% of the tocainide dose is efirninated by the kidneys unchanged, and the rest is efirninated as metabolites. The elimination half-life of tocainide is about 15 h, and is prolonged in patients with renal disease (1,2,23). [Pg.113]

Encainide is almost completely absorbed from the GI tract. Eood may delay absorption without altering its bioavailabiUty. The dmg is rapidly metabolized in 90% of the patients to two principal metaboUtes, 0-demethylencainide (ODE) and 3-methoxy-O-demethylencainide (MODE), while the other 10% metabolize encainide slowly with Htde or no ODE or MODE formed. Encainide, ODE, and MODE are extensively protein bound 75—80% for encainide and ODE and 92% for MODE. Peak plasma concentrations are achieved in 30—90 min. Therapeutic plasma concentrations are very low the concentrations of ODE and MODE are approximately five times those of encainide. The findings with the metaboUtes are significant because ODE is 2—10 times and MODE, 1—4 times more effective than encainide as antiarrhythmics. The half-Hves for encainide in fast and slow metabolizers is 1—2 h and 6—12 h, respectively. The elimination half-life for ODE is 3—4 h and for MODE 6—12 h in fast metabolizers. Excretion occurs through the Hver and kidneys (1,2). [Pg.114]

Elecainide is weU absorbed and 90% of the po dose is bioavailable. Binding to plasma protein is only 40% and peak plasma concentrations are attained in about 1—6 h. Three to five days may be requited to attain steady-state plasma concentrations when multiple doses are used. Therapeutic plasma concentrations are 0.2—1.0 lg/mL. Elecainide has an elimination half-life of 12—27 h, allowing twice a day dosing. The plasma half-life is increased in patients with renal failure or low cardiac outputs. About 70% of the flecainide in plasma is metabolized by the Hver to two principal metaboUtes. The antiarrhythmic potency of the meta-O-dealkylated metaboUte and the meta-O-dealkylated lactam, relative to that of flecainide is 50 and 10%, respectively. The plasma concentrations of the two metaboUtes relative to that of flecainide are 3—25%. Elecainide is mainly excreted by the kidneys, 30% unchanged, the rest as metaboUtes or conjugates about 5% is excreted in the feces (1,2). [Pg.114]

About 97% of po dose is absorbed from the GI tract. The dmg undergoes extensive first-pass hepatic metaboHsm and only 12% of the po dose is bioavailable. More than 95% is protein bound and peak plasma concentrations are achieved in 2—3 h. Therapeutic plasma concentrations are 0.064—1.044 lg/mL. The dmg is metabolized in the Hver to 5-hyroxypropafenone, which has some antiarrhythmic activity, and to inactive hydroxymethoxy propafenone, glucuronides, and sulfate conjugates. Less than 1% of the po dose is excreted by the kidney unchanged. The elimination half-life is 2—12 h (32). [Pg.114]

Acebutolol is well absorbed from the GI tract. It undergoes extensive hepatic first-pass metabohsm. BioavailabiUty of the parent compound is about 40%. The principal metaboflte, A/-acetylacebutolol, has antiarrhythmic activity and appears to be more cardioselective. Binding to plasma proteins is only 26%. Peak plasma concentrations of acebutolol are achieved in 2.5 h, 3.5 h for A/-acetylacebutolol. The elimination half-Hves of acebutolol and its metabohte are 3—4 and 8—13 h, respectively. The compounds are excreted by the kidneys (30—40%) and by the Hver into the bile (50—60%). About 40% of the amount excreted in the urine is unchanged acebutolol, the rest as metabofltes (32). [Pg.119]

Esmolol is iv adrninistered. Maximal P-adrenoceptor blockade occurs in 1 min. Its elimination half-life is about 9 min. EuU recovery from P-adrenoceptor blockade is within 30 min after stopping the infusion. The therapeutic plasma concentrations are 0.4—1.2 lg/mL. It is metabolized by hydrolysis in whole blood by red blood cell esterases resulting in the formation of a primary acid metabohte and free methanol. The metabohte is pharmacologically inactive. The resulting methanol levels are not toxic. Esmolol is 55% bound to plasma protein, the acid metabohte only 10%. Less than 2% of parent dmg and the acid metabohte are excreted by the kidneys. Plasma levels may be elevated and elimination half-hves prolonged in patients with renal disease (41). [Pg.119]

Sotalol is rapidly and almost completely (>90%) absorbed. Bioavahabhity of absorbed dmg is 89—100%. Peak plasma levels are achieved in 2—4 h. Sotalol is 50% bound to plasma proteins. Plasma half-life of the compound is about 5.2 h. No metabolites of sotalol have been identified indicating littie metabolism. The dmg is excreted mainly by the kidneys (80—90%) and about 10% is eliminated in the feces. The plasma half-life is prolonged in patients having renal failure. Kinetics of the compound are not affected by changes in liver function (1,2). Sotalol has ah the adverse effects of -adrenoceptor blockers including myocardial depression, bradycardia, transient hypotension, and proarrhythmic effects (1,2). [Pg.121]

Absorption of nadolol after po dosing is variable, averaging about 30%. The presence of food does not affect absorption. There is no hepatic first-pass metabolism and peak plasma concentrations are achieved in 3—4 h after po doses. About 30% of the plasma concentration is protein bound. The elimination half-hfe of nadolol is 20—24 h, allowing once a day dosing. The dmg is excreted unchanged by the kidneys and its excretion is delayed in patients having renal failure (98,99,108). [Pg.127]

After po doses, atenolol is rapidly but incompletely absorbed ( 50%) from the GI tract, and 50% is excreted unchanged in the feces. Six to 16% of the plasma concentration is bound to protein. Atenolol undergoes Httie first-pass metaboHsm. Peak plasma concentrations occur in 2—4 h after po doses. The elimination half-hfe of atenolol is 6—7 h. Excretion of absorbed dmg is mainly by the kidneys and elimination can be impaired in patients having renal failure. The adverse effects of atenolol are similar to those seen for propranolol therapy (98,99,108). [Pg.127]

Bisoprolol fumarate is a long-acting, cardioselective -adrenoceptor blocker, and is the most potent cardioselective -adrenoceptor blocker available. Bisoprolol has no ISA. At high concentrations it has membrane-stabilizing activity. The dmg has a "balanced clearance", ie, half is excreted by the kidneys and half is eliminated by the Hver and its excretion is not affected by functional impairment of either organ. It is approved in Europe for hypertension and is being studied in angina (43). [Pg.127]

Exposure to tetrachloroethylene as a result of vapor inhalation is foUowed by absorption into the bloodstream. It is partly excreted unchanged by the lungs (17,18). Approximately 20% of the absorbed material is subsequently metabolized and eliminated through the kidneys (27—29). MetaboHc breakdown occurs by oxidation to trichloroacetic acid and oxaHc acid. [Pg.30]

Rcnsl dipcptidflsc (from porcine kidney cortex) [9031-96-3] Mr 47,000 [EC 3.4.13.11]. Purified by homogenising the tissue, extracting with Triton X-100, elimination of insoluble material, and ion-exchange, size exclusion and affinity chromatography. [Hitchcock et al. Anal Biochem 163 219 7957.]... [Pg.564]

The absorption, distribution, and accumulation of lead in the human body may be represented by a three-part model (6). The first part consists of red blood cells, which move the lead to the other two parts, soft tissue and bone. The blood cells and soft tissue, represented by the liver and kidney, constitute the mobile part of the lead body burden, which can fluctuate depending on the length of exposure to the pollutant. Lead accumulation over a long period of time occurs in the bones, which store up to 95% of the total body burden. However, the lead in soft tissue represents a potentially greater toxicological hazard and is the more important component of the lead body burden. Lead measured in the urine has been found to be a good index of the amount of mobile lead in the body. The majority of lead is eliminated from the body in the urine and feces, with smaller amounts removed by sweat, hair, and nails. [Pg.102]

The toxic effect depends both on lipid and blood solubility. I his will be illustrated with an example of anesthetic gases. The solubility of dinitrous oxide (N2O) in blood is very small therefore, it very quickly saturates in the blood, and its effect on the central nervous system is quick, but because N,0 is not highly lipid soluble, it does not cause deep anesthesia. Halothane and diethyl ether, in contrast, are very lipid soluble, and their solubility in the blood is also high. Thus, their saturation in the blood takes place slowly. For the same reason, the increase of tissue concentration is a slow process. On the other hand, the depression of the central nervous system may become deep, and may even cause death. During the elimination phase, the same processes occur in reverse order. N2O is rapidly eliminated whereas the elimination of halothane and diethyl ether is slow. In addition, only a small part of halothane and diethyl ether are eliminated via the lungs. They require first biotransformation and then elimination of the metabolites through the kidneys into the... [Pg.260]


See other pages where Kidney elimination is mentioned: [Pg.901]    [Pg.16]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.138]    [Pg.653]    [Pg.54]    [Pg.363]    [Pg.236]    [Pg.901]    [Pg.16]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.138]    [Pg.653]    [Pg.54]    [Pg.363]    [Pg.236]    [Pg.204]    [Pg.352]    [Pg.58]    [Pg.270]    [Pg.481]    [Pg.63]    [Pg.164]    [Pg.119]    [Pg.120]    [Pg.126]    [Pg.127]    [Pg.3]    [Pg.202]    [Pg.151]    [Pg.9]    [Pg.307]    [Pg.524]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



© 2024 chempedia.info