Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination biliary

Both methods of absorption calculation mentioned are based on the fact that after absorption the drug/metabolites reach the central circulation. In case of oral administered drugs targeting the liver and being eliminated biliary instantly, it is obvious that both methods mentioned fail. In such a special case an absorption estimation might be possible via a biliary excretion study. [Pg.571]

Elimination Biliary excretion Alternative mechanisms Enterohepatic recirculation (renal impairment)... [Pg.307]

Renal excretion is the most important endosulfan elimination route in humans and animals. Biliary excretion has also been demonstrated to be important in animals. Estimated elimination half-lives ranged between approximately 1 and 7 days in adult humans and animals. Endosulfan can also be eliminated via the breast milk in lactating women and animals, although this is probably a relatively minor elimination route. No studies were located regarding known or suspected differences between children and adults with respect to endosulfan excretion. [Pg.133]

These studies represent the first report of the metabolism of brevetoxins by mammalian systems. PbTx-3 was rapidly cleared from the bloodstream and distributed to the liver, muscle, and gastrointestinal tract. Studies with isolated perfused livers and isolated hepatocytes conflrmed the liver as a site of metabolism and biliary excretion as an important route of toxin elimination. [ H]PbTx-3 was metabolized to several compounds exhibiting increased polarity, one of which appeared to be an epoxide derivative. Whether this compound corresponds to PbTx-6 (the 27,28 epoxide of PbTx-2), to the corresponding epoxide of PbTx-3, or to another structure is unknown. The structures of these metabolites are currently under investigation. [Pg.181]

Finally, the fact that anthocyanins can reach the brain represents a beginning of an explanation of the purported neuroprotection effects of anthocyanins. Anthocyanins may be eliminated via urinary and biliary excretion routes. " The extent of elimination of anthocyanins via urine is usually very low (< 0.2% intake) in rats and in humans, indicating either a more pronounced elimination via the bile route or extensive metabolism. As mentioned earlier, in the colon, non-absorbed or biliary excreted anthocyanins can be metabolized by the intestinal microflora into simpler break-down compounds such as phenolic acids that may be (re)absorbed and conjugated with glycine, glucuronic acid, or sulfate and also exhibit some biological... [Pg.168]

This royal-blue-colored drug is an anthracenedione that inhibits DNA topoisomerase II. The pharmacokinetics of mitoxantrone may best be described by a three-compartment model, with an a half-life of 3 to 10 minutes, a 3 half life of 0.3 to 3 hours, and a median terminal half-life of 12 days. Biliary elimination appears to be the primary route of elimination, with less than 10% of the drug eliminated by the kidney.23 Mitoxantrone has shown clinical activity in the treatment of acute leukemias, breast and prostate cancer, and non-Hodgkin s lymphomas. Myelosuppression, mucositis, nausea and vomiting, and cardiac toxicity are side effects of this drug. The total cumulative dose limit is 160 mg/m2 for patients who have not received prior anthracycline or mediastinal radiation. Patients who have received prior doxorubicin or daunorubicin therapy should not receive a cumulative dose greater than 120 mg/m2 of mitoxantrone. Patients should be counseled that their urine will turn a blue-green color. [Pg.1289]

Studies with rats treated orally with triaryl or trialkyl phosphate esters (which may be found in organophosphate ester hydraulic fluids) indicate that these compounds and their metabolites are readily excreted in the urine, bile, feces and, to a limited extent, in expired air (Kurebayashi et al. 1985 Somkuti and Abou-Donia 1990a Suzuki et al. 1984a Yang et al. 1990). Urinary excretion of metabolites appears to be the predominant elimination route in rats for tri-ort/zo-cresyl phosphate and tri-para-cresyl phosphate, but biliary excretion of parent material and metabolites is also important (Kurebayashi et al. 1985 NTP... [Pg.176]

Lead is also eliminated in the bile (Klaassen and Shoeman 1974). In the rat, excretion occurs in the urine, with greater excretion in the feces following intravenous administration (Castellino and Aloj 1964 Klaassen and Shoeman 1974 Morgan et al. 1977). As the dose increases, the proportion of the lead excreted into the gut via bile increases, then plateaus at 3 and 10 mg/kg (Klaassen and Shoeman 1974). Biliary excretion of lead is suggested to be a saturable process (Gregus and Klaassen 1986). Excretion of lead in the bile by dogs amounted to approximately 2% of that by rats, and biliary excretion of lead by rabbits amounted to approximately 40% of that by rats (Klaassen and Shoeman 1974). [Pg.229]

Ward et al. [125] investigated the disposition of 14C-radiolabeled primaquine in the isolated perfused rat liver preparation, after the administration of 0.5, 1.5, and 5 mg doses of the drug. The pharmacokinetics of primaquine in the experimental model was dependent on dose size. Increasing the dose from 0.5 to 5 mg produced a significant reduction in clearance from 11.6 to 2.9 mL/min. This decrease was accompanied by a disproportionate increase in the value of the area under the curve from 25.4 to 1128.6 pg/mL, elimination half-life from 33.2 to 413 min, and volume of distribution from 547.7 to 1489 mL. Primaquine exhibited dose dependency in its pattern of metabolism. While the carboxylic acid derivative of primaquine was not detected perfusate after the 0.5 mg dose, it was the principal perfusate metabolite after 5 mg dose. Primaquine was subject to extensive biliary excretion at all doses, the total amount of 14C-radioactivity excreted in the bile decreased from 60 to 30%i as the dose of primaquine was increased from 0.5 to 5 mg. [Pg.198]

PCP clearance was essentially metabolic, with only 5.3% unchanged by the kidney. About 60% of the dose was recovered in urine mainly as conjugated PCP and conjugated tetraclorohydroquinone. For both routes of administration, about 10% of the dose was recovered in feces as PCP and its metabolites, which indicates that biliary excretion contributes to total elimination (Reigner et al. 1991)... [Pg.1220]

Peak plasma levels are reached about 1.5 h after oral ingestion, the maximum concentrations being in the order of 2 - 3 ng equivalents/ml (parent drug + metabolites) for an oral 1 mg dose. The elimination from the plasma is biphasic and proceeds with mean half-lives of 6 h (a-phase) and 50 h ((3-phase). Similar elimination half-lives are obtained from the urinary excretion. The cumulative renal excretion is practically the same after oral and intravenous administration and amounts to 6 - 7 % of the radioactivity dosed. The main portion of the dose, either oral or intravenous, is eliminated by the biliary route into the faeces. The kinetics of bromocriptine has been demonstrated to be linear in the oral dose range from 2.5 to 7.5 mg. [Pg.68]

An acute intravenous study can provide accurate rates of metabolism without interference from intestinal flora, plus rates of renal and biliary elimination, if urine and bile are collected. This route also avoids the variability in delivered dose associated with oral absorption and ensures that the maximum amount of radiolabel is excreted in the urine or bile for purposes of detection. Once IV data and parameters are available, they can be used with plasma concentrations from limited oral studies to compute intestinal absorption via the ratio of Areas Under the (plasma and/or urine) Curves or via simulations of absorption with gastrointestinal absorption models. [Pg.724]

Excretion is the process of eliminating drugs from the body. They may be excreted as metabolites or as unchanged drug. As mentioned above, compounds that are polar and water soluble are more readily eliminated. The major routes of excretion are renal, biliary/fecal, lactational, and pulmonary. [Pg.75]

The disappearance of tritiated vindesine from the blood of rats has been reported to be biphasic, with half-life estimates of 15 min (distribution) and 10 hr (elimination) (59) it is likely that the prolonged elimination phase represents a hybrid between the second elimination phase described above for vincristine and the prolonged third phase evident on inspection of log concentration-time plots for vincristine in the rat. Biliary excretion contributes heavily to the elimination of vindesine in the rat. The bioavailability of vindesine in the rat appears to be very poor. The distribution of vincristine to different tissues in the mouse has been correlated with the estimated concentration of tubulin in the tissues (40). Tubulin concentration was measured by the capacity of a tissue to bind colchicine (40) comparable relationships between tissue concentrations of vincristine and colchicine binding capacity were observed for the dog and the monkey, but it should be emphasized that the correlations were based on the assumption that tissue tubulin content is closely similar in the mouse, dog, and monkey. [Pg.219]

Taken together, these data are consistent with those of a BPA (low Vp, C5/C0 ratio greater than that of iobitridol) that is freely excreted by the kidney with a very short elimination half-life. Furthermore, no biliary excretion was observed up to 6 hours after intravenous injection of P743 at the dose of 300 mgl kg in awake rats. [Pg.164]

In contrast with unconjugated compounds, the conjugates are much more water-soluble and capable of being excreted. The conjugates are eliminated from the liver either by the biliary route—i.e., by receptor-mediated excretion into the bile—or by the renal route, via the blood and kidneys by filtration. [Pg.316]


See other pages where Elimination biliary is mentioned: [Pg.2154]    [Pg.108]    [Pg.2154]    [Pg.108]    [Pg.134]    [Pg.140]    [Pg.178]    [Pg.572]    [Pg.1287]    [Pg.1287]    [Pg.1499]    [Pg.69]    [Pg.143]    [Pg.228]    [Pg.165]    [Pg.162]    [Pg.198]    [Pg.293]    [Pg.1394]    [Pg.538]    [Pg.714]    [Pg.302]    [Pg.118]    [Pg.59]    [Pg.362]    [Pg.357]    [Pg.357]    [Pg.45]    [Pg.67]    [Pg.219]    [Pg.53]    [Pg.45]    [Pg.185]    [Pg.189]    [Pg.231]    [Pg.179]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



© 2024 chempedia.info