Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elements potential-setting

Some of the basis sets discussed here are used more often than others. The STO—3G set is the most widely used minimal basis set. The Pople sets, particularly, 3—21G, 6—31G, and 6—311G, with the extra functions described previously are widely used for quantitative results, particularly for organic molecules. The correlation consistent sets have been most widely used in recent years for high-accuracy calculations. The CBS and G2 methods are becoming popular for very-high-accuracy results. The Wachters and Hay sets are popular for transition metals. The core potential sets, particularly Hay-Wadt, LANL2DZ, Dolg, and SBKJC, are used for heavy elements, Rb and heavier. [Pg.89]

The plant engineer and his maintenance manager will establish whoever carries out the work, basic strategy, programming and procedures. Inspection checklists and record sheets are necessary for systematic location of critical elements/potential defects and setting out frequencies of inspection. Computers and work processors are an obvious aid to effective maintenance management. Inspection-based preventive methods are demonstrably cost effective. [Pg.57]

In geochemistry, the introduction of RMs did not take place until 1951 but, once RM usage became a regular part of geochemical analysis, the consequences were not far short of amazing. For many years geochemical analysts had been concerned about the accuracy of their determinations of major elements in rocks, but it was the potential of emission spectrometry for the determination of trace elements which set off the production of the first rock Certified Reference Materials (CRMs),... [Pg.3]

The variable p (r) denotes the nuclear charge density at a point r with coordinates r = xi,X2,x ), and V r) is the Coulomb potential set up at that point by all other charges (the Coulomb constant k = l/(47t o) is dropped in this description). The integration variable in (4.1) is the volume element dr = Ax dr2dx3. The origin of the coordinate system is chosen to coincide with the center of the nuclear charge. A more convenient expression can be obtained by expanding V r) at f = (0,0,0) in a Taylor series, that is,... [Pg.74]

The diagonal elements are set equal to the effective valence-state ionization potentials of the orbitals in question. The off-diagonal elements, Hr can be evaluated in several ways. The two expressions in most common usage are the original Wolfsberg-Helmholz expression,... [Pg.127]

Within a year of the discovery of XePtFe and as a result of worldwide activity, it was clear that the chemistry of the noble gases would be limited to the heavier elements as set out in my Noranda Lecture (see Ref. S2). Because of the dangerous radioactivity associated with all of the radon isotopes, this meant that the bulk of noble-gas chemistry would be that of xenon. The chemistry of krypton appeared to be limited to KrF2 and compounds that could be derived from it. In all cases, it was clear, the range of accessible noble-gas chemistry was dictated by lower ionization potentials at the noble-gas atom, and high electronegativity and small size of the ligand atoms, as discussed in Ref. 45. [Pg.198]

In natural waters occur not one but several oxidation-reduction reactions. These reactions are associated with the presence of several elements, which are capable of changing their charge, and run in parallel. For this reason, total oxidation potential of the solution is defined by the nature and concentration of all redox-couples. Components which noticeably affect the solution s oxidation-reduction potential are called electroactive. Elements whose concentration and form of existence actually control solution s oxidation are culled potential-setting. In natural waters these are usually O, S, C, N and Fe. The medium whose oxidation potential value almost does not change with the addition of oxidizers or reducers is called redox-buffers. The redox-buffer may be associated with composition of the water itself, of its host rocks or with the effect of atmosphere. In the subsurface redox-buffers are associated, as a rule, with the content of iron, sulphur or manganese. Stably high Eh value in the surface and ground waters is caused by the inexhaustible source of in the atmosphere. [Pg.91]

As soon as ions are incorporated into the interface, a galvanic element is set up between the defect and the adjacent polymer-metal interface. The potential of the interface is polarized to more negative values and oxygen wQl be reduced. [Pg.539]

Fig. 2 Distributions of (a) temperature, (b) potential, (c) current density and (d) voltage for trapezoid module. Thickness of the element is set as 1.0 mm. Fig. 2 Distributions of (a) temperature, (b) potential, (c) current density and (d) voltage for trapezoid module. Thickness of the element is set as 1.0 mm.
State I ) m the electronic ground state. In principle, other possibilities may also be conceived for the preparation step, as discussed in section A3.13.1, section A3.13.2 and section A3.13.3. In order to detemiine superposition coefficients within a realistic experimental set-up using irradiation, the following questions need to be answered (1) Wliat are the eigenstates (2) What are the electric dipole transition matrix elements (3) What is the orientation of the molecule with respect to the laboratory fixed (Imearly or circularly) polarized electric field vector of the radiation The first question requires knowledge of the potential energy surface, or... [Pg.1059]

Frequent approximations made in TB teclmiques in the name of achieving a fast method are the use of a minimal basis set, the lack of a self-consistent charge density, the fitting of matrix elements of the potential. [Pg.2202]

In modem quantum chemistry packages, one can obtain moleculai basis set at the optimized geometry, in which the wave functions of the molecular basis are expanded in terms of a set of orthogonal Gaussian basis set. Therefore, we need to derive efficient fomiulas for calculating the above-mentioned matrix elements, between Gaussian functions of the first and second derivatives of the Coulomb potential ternis, especially the second derivative term that is not available in quantum chemistry packages. Section TV is devoted to the evaluation of these matrix elements. [Pg.409]

In the work of King, Dupuis, and Rys [15,16], the mabix elements of the Coulomb interaction term in Gaussian basis set were evaluated by solving the differential equations satisfied by these matrix elements. Thus, the Coulomb matrix elements are expressed in the form of the Rys polynomials. The potential problem of this method is that to obtain the mabix elements of the higher derivatives of Coulomb interactions, we need to solve more complicated differential equations numerically. Great effort has to be taken to ensure that the differential equation solver can solve such differential equations stably, and to... [Pg.409]

In Chapter IX, Liang et al. present an approach, termed as the crude Bom-Oppenheimer approximation, which is based on the Born-Oppen-heimer approximation but employs the straightforward perturbation method. Within their chapter they develop this approximation to become a practical method for computing potential energy surfaces. They show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of the Coulomb interaction with respect to nuclear coordinates is essential. For this purpose, they study a diatomic molecule, and by doing that demonstrate the basic skill to compute the relevant matrix elements for the Gaussian basis sets. Finally, they apply this approach to the H2 molecule and show that the calculated equilibrium position and foree constant fit reasonable well those obtained by other approaches. [Pg.771]


See other pages where Elements potential-setting is mentioned: [Pg.2043]    [Pg.118]    [Pg.365]    [Pg.204]    [Pg.524]    [Pg.116]    [Pg.106]    [Pg.280]    [Pg.67]    [Pg.88]    [Pg.346]    [Pg.249]    [Pg.390]    [Pg.42]    [Pg.212]    [Pg.19]    [Pg.122]    [Pg.905]    [Pg.668]    [Pg.879]    [Pg.2204]    [Pg.2210]    [Pg.2342]    [Pg.2658]    [Pg.307]    [Pg.443]    [Pg.392]    [Pg.122]    [Pg.136]    [Pg.174]    [Pg.213]    [Pg.613]    [Pg.663]    [Pg.117]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Elemental potential

© 2024 chempedia.info