Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coulomb constant

The variable p (r) denotes the nuclear charge density at a point r with coordinates r = xi,X2,x ), and V r) is the Coulomb potential set up at that point by all other charges (the Coulomb constant k = l/(47t o) is dropped in this description). The integration variable in (4.1) is the volume element dr = Ax dr2dx3. The origin of the coordinate system is chosen to coincide with the center of the nuclear charge. A more convenient expression can be obtained by expanding V r) at f = (0,0,0) in a Taylor series, that is,... [Pg.74]

The entity ot is the so-called isomer shift calibration constant, c is the speed of light, Co is the electric constant, and Eq is the nuclear transition energy. (The Coulomb constant k = l/(47rco), which was dropped in (4.1), is re-inserted here.) A comprehensive derivation of this expression is found in [8, 9]. [Pg.80]

Madeluag constant For an ionic crystal composed of cations and anions of respective change z + and z, the la ttice energy Vq may be derived as the balance between the coulombic attractive and repulsive forces. This approach yields the Born-Lande equation,... [Pg.245]

The simplest example is that of tire shallow P donor in Si. Four of its five valence electrons participate in tire covalent bonding to its four Si nearest neighbours at tire substitutional site. The energy of tire fiftli electron which, at 0 K, is in an energy level just below tire minimum of tire CB, is approximated by rrt /2wCplus tire screened Coulomb attraction to tire ion, e /sr, where is tire dielectric constant or the frequency-dependent dielectric function. The Sclirodinger equation for tliis electron reduces to tliat of tlie hydrogen atom, but m replaces tlie electronic mass and screens the Coulomb attraction. [Pg.2887]

In Chapter IX, Liang et al. present an approach, termed as the crude Bom-Oppenheimer approximation, which is based on the Born-Oppen-heimer approximation but employs the straightforward perturbation method. Within their chapter they develop this approximation to become a practical method for computing potential energy surfaces. They show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of the Coulomb interaction with respect to nuclear coordinates is essential. For this purpose, they study a diatomic molecule, and by doing that demonstrate the basic skill to compute the relevant matrix elements for the Gaussian basis sets. Finally, they apply this approach to the H2 molecule and show that the calculated equilibrium position and foree constant fit reasonable well those obtained by other approaches. [Pg.771]

The interaction between two charges qi and qj separated by the distance rij in a medium with a dielectric constant e is given by Coulomb s law, which sums the energetic contributions over all pairs ij of point charges within a molecule (Eq. (25)). [Pg.345]

Note that the mathematical symbol V stands for the second derivative of a function (in this case with respect to the Cartesian coordinates d fdx + d jdy + d jdz y, therefore the relationship stated in Eq. (41) is a second-order differential equation. Only for a constant dielectric Eq.(41) can be reduced to Coulomb s law. In the more interesting case where the dielectric is not constant within the volume considered, the Poisson equation is modified according to Eq. (42). [Pg.365]

Vhen calculating the total energy of the system, we should not forget the Coulomb inter-ction between the nuclei this is constant within the Born-Oppenheimer approximation Dr a given spatial arrangement of nuclei. When it is desired to change the nuclear positions,... [Pg.70]

The charge density is simply the distribution of charge throughout the system and has 1 units of Cm . The Poisson equation is thus a second-order differential equation (V the usual abbreviation for (d /dr ) + (f /dx/) + (d /dz )). For a set of point charges in constant dielectric the Poisson equation reduces to Coulomb s law. However, if the dielectr... [Pg.619]

The energy of solvation can be further broken down into terms that are a function of the bulk solvent and terms that are specifically associated with the first solvation shell. The bulk solvent contribution is primarily the result of dielectric shielding of electrostatic charge interactions. In the simplest form, this can be included in electrostatic interactions by including a dielectric constant k, as in the following Coulombic interaction equation ... [Pg.206]

To a 250-ml not-partitioned electrochemical cell, 135 ml of CH3CN, 15 ml ofHiO, 6.20 g of NaBr and 2.82 g of olefin ( ) is added. The mixture, kept at 2(f C, is electrolysed by using the same electrodes as of Example 1, but with a constant current density of 1.7 A being used,until through the cell 4,000 Coulombs have been passed. The reaction mixture is then processed as described in Example 4.2.56 g is obtained of ketone (III), with a yield of 83.2%, as computed relatively to the olefin (I) used as the starting material. [Pg.192]

Coulomb s law. This relationship poses no particular difficulties as a qualitative statement the problem arises when we attempt to calculate something with it, since the proportionality constant depends on the choice of units. In the cgs system of units, the electrostatic unit of charge is defined to produce a force of 1 dyne when two such charges are separated by a distance of 1 cm. In the cgs system the proportionality factor in Coulomb s law is unity and is dimensionless. For charges under vacuum we write... [Pg.715]

By contrast, in SI units, the coulomb (C) is the unit of charge and is defined as an ampere second (A sec). To reconcile this with newtons and meters, the units of F and r, respectively, a proportionality constant that is numerically different from unity and which has definite units is required. For charges under vacuum we write... [Pg.715]

Stokes-Cunningham correction factor sphericity correction constant Coulomb s law constant, 8.987 x 10 ... [Pg.412]

EIectrosta.tlcs. Electrostatic interactions, such as salt bridges, result from the electrostatic attraction that occurs between oppositely charged molecules. These usually involve a single cation, eg, the side chain of Lys or Arg, or the amino terminus, etc, interacting with a single anion, eg, the side chain of Glu or Asp, or the carboxyl terminus, etc. This attractive force is iaversely proportional to the distance between the charges and the dielectric constant of the solvent, as described by Coulomb s law. [Pg.196]


See other pages where Coulomb constant is mentioned: [Pg.274]    [Pg.260]    [Pg.168]    [Pg.169]    [Pg.165]    [Pg.2339]    [Pg.211]    [Pg.16]    [Pg.616]    [Pg.277]    [Pg.274]    [Pg.260]    [Pg.168]    [Pg.169]    [Pg.165]    [Pg.2339]    [Pg.211]    [Pg.16]    [Pg.616]    [Pg.277]    [Pg.1145]    [Pg.2181]    [Pg.401]    [Pg.70]    [Pg.364]    [Pg.80]    [Pg.120]    [Pg.612]    [Pg.620]    [Pg.623]    [Pg.642]    [Pg.67]    [Pg.179]    [Pg.50]    [Pg.127]    [Pg.190]    [Pg.191]    [Pg.191]    [Pg.496]    [Pg.496]    [Pg.389]    [Pg.527]    [Pg.531]    [Pg.589]   
See also in sourсe #XX -- [ Pg.80 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Coulomb force constants

© 2024 chempedia.info