Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nomenclature elements

The familiar BO approximation is obtained by ignoring the operators A completely. This results in the picture of the nuclei moving over the PES provided by the electrons, which are moving so as to instantaneously follow the nuclear motion. Another common level of approximation is to exclude the off-diagonal elements of this operator matrix. This is known as the Bom-Huang, or simply the adiabatic, approximation (see [250] for further details of the possible approximations and nomenclature associated with the nuclear Schrodinger equation). [Pg.313]

Using the same nomenclature as for the INDO approximation, the elements of the MfNDOfS UHFFock matrix are described below. When < )j an d d tti iJ on different cen lers the off-diagonal elem en ts are... [Pg.280]

Isopropyl group (Section 2 13) The group (CH3)2CH— Isotactic polymer (Section 7 15) A stereoregular polymer in which the substituent at each successive chirality center is on the same side of the zigzag carbon chain Isotopic cluster (Section 13 22) In mass spectrometry a group of peaks that differ in m/z because they incorporate differ ent isotopes of their component elements lUPAC nomenclature (Section 2 11) The most widely used method of naming organic compounds It uses a set of rules proposed and periodically revised by the International Union of Pure and Applied Chemistry... [Pg.1287]

Descriptive properties for a basic group of approximately 1400 inorganic compounds are compiled in Section 3. These follow a concise, revised introduction to inorganic nomenclature that follows the recommendations of the lUPAC published in 1990. In this section are given the exact atomic (or formula) weight of the elements accompanied, when available, by the uncertainty in the final figure given in parentheses. [Pg.1286]

In the days of alchemy and the phlogiston theory, no system of nomenclature that would be considered logical ia the 1990s was possible. Names were not based on composition, but on historical association, eg, Glauber s salt for sodium sulfate decahydrate and Epsom salt for magnesium sulfate physical characteristics, eg, spirit of wiae for ethanol, oil of vitriol for sulfuric acid, butter of antimony for antimony trichloride, Hver of sulfur for potassium sulfide, and cream of tartar for potassium hydrogen tartrate or physiological behavior, eg, caustic soda for sodium hydroxide. Some of these common or trivial names persist, especially ia the nonchemical Hterature. Such names were a necessity at the time they were iatroduced because the concept of molecular stmcture had not been developed, and even elemental composition was incomplete or iadeterminate for many substances. [Pg.115]

Berzehus (19) further appHed and amplified the nomenclature introduced by Guyton de Morveau and Lavoisier. It was he who divided the elements into metalloids (nonmetals) and metals according to their electrochemical character, and the compounds of oxygen with positive elements (metals) into suboxides, oxides, and peroxides. His division of the acids according to degree of oxidation has been Httie altered. He introduced the terms anhydride and amphoteric and designated the chlorides in a manner similar to that used for the oxides. [Pg.115]

Elemental composition, ionic charge, and oxidation state are the dominant considerations in inorganic nomenclature. Coimectivity, ie, which atoms are linked by bonds to which other atoms, has not generally been considered to be important, and indeed, in some types of compounds, such as cluster compounds, it caimot be appHed unambiguously. However, when it is necessary to indicate coimectivity, itaUcized symbols for the connected atoms are used, as in trioxodinitrate(A/,A/), O2N—NO . The nomenclature that has been presented appHes to isolated molecules (or ions). Eor substances in the soHd state, which may have more than one crystal stmcture, with individual connectivities, two devices are used. The name of a mineral that exemplifies a particular crystal stmcture, eg, mtile or perovskite, may be appended. Alternatively, the crystal stmcture symmetry, eg, rhombic or triclinic, may be cited, or the stmcture may be stated in a phrase, eg, face-centered cubic. [Pg.117]

The lUPAC Commission on Nomenclature of Inorganic Chemistry continues its work, which is effectively open-ended. Guidance in the use of lUPAC rules (38) as well as explanations of their formulation (39) are available. A second volume on nomenclature of inorganic chemistry is in preparation it will be devoted to specialized areas. Some of the contents have had preliminary pubHcation in the journal Pure andJipplied Chemist, eg, "Names and Symbols of Transfermium Elements" in 1944. [Pg.117]

There are 19, largely nonmetallic, elements encompassed by the Hantzsch-Widman system the prefixes to indicate them are shown in Table 2. These prefixes, all of which end in a (which may be lost by elision), are the same as those used in replacement nomenclature (Section 1.02.2.3). [Pg.11]

The separate question of names and symbols for the new elements has, unfortunately, taken even longer to resolve, but definitive recommendations were ratified by lUPAC in August 1997 and have been generally accepted. It is clearly both unsatisfactory and confusing to have more than one name in current use for a given element and to have the same name being applied to two different elements. For this reason the present treatment refers to the individual elements by means of their atomic numbers. However, to help readers with the nomenclature used in the references cited, a list of the various names that are in use or that have been suggested from time to time is summarised in Table 31.7. [Pg.1280]

Nomenclature of organometallic compounds of the transition elements (lUPAC recommendations) 99PAC1557. [Pg.204]

Inorganic Nomenclature. Compounds may be named in German merely by compounding the names of the elements as, Jodkalium (potassium iodide), SHiziumfiuorwasserstoff (hydrogen silicofluoride, fluosihcic acid). Words formed from the names of two elements are usually to be translated by giving the -ide ending to the first part (Jodkalium, potassium iodide). [Pg.551]

Organic Polymers, Natural and Synthetic 610 Appendix 1 Units, Constants, and Reference Data 635 Appendix 2 Properties of the Elements 641 Appendix 3 Exponents and Logarithms 643 Appendix 4 Nomenclature of Complex Ions 648 Appendix 5 Molecular Orbitals 650... [Pg.710]

Some older systems of nomenclature are still in use. For example, some cations were once denoted by the endings -ous and -ic for the ions with lower and higher charges, respectively. To make matters worse, these endings were in some cases added to the Latin form of the element s name. Thus, iron(II) ions were called ferrous ions and iron(III) ions were called ferric ions (see Appendix 3C). We do not use this system in this text, but you will sometimes come across it and should be aware of it. [Pg.54]

The aim of chemical nomenclature is to be simple but unambiguous. A systematic name specifies the elements present in the molecule and the numbers of atoms of each element. [Pg.58]

Modern nomenclature includes Element Cation Old-style name Modern name... [Pg.938]

Note. In carbohydrate nomenclature, substitution at a heteroatom is normally indicated by citing the locant of the attached carbon atom, followed by a hyphen, and then the italicized heteroatom element symbol, e.g. 2-0-methyl, 5-N-acetyl. Substituents on the same kind of heteroatom are grouped (e.g. 2,3,4-tri-0-methy 1), and substituents of the same kind are cited in alphabetical order of heteroatoms (e.g. 5-N-acetyl-4,8,9-tri-0-acetyl). The alternative format with superscript numerical locants (e.g, N5,(/,(), ( -tetraacetyl), used in some other areas of natural product chemistry, is unusual in carbohydrate names. [Pg.117]

A remarkable variety of compounds in the Ca-(B,C,N) system has opened a window for research in related fields. With the elements boron, carbon and nitrogen, substance classes such as borocarbides, boronitrides, and carbonitrides can be considered to contain anionic derivatives of binary compounds B4C, BN, and C3N4. Until now, most compounds in these substance classes have been considered to contain alkali, alkaline-earth, or lanthanide elements. Lanthanide borocarbides are known from the work of Bauer [1]. Lanthanide boronitrides represent a younger family of compounds, also assigned as nitridoborates [2] following the nomenclature of oxoborates. [Pg.121]

None of these compounds contains a metallic element, so we apply the guidelines for binary compound nomenclature. [Pg.134]

Names make sense if they conform to the rules for nomenclature. The element further to the left in the periodic table appears first, the second element has an -ide suffix, and prefixes denote the number of atoms. [Pg.135]


See other pages where Nomenclature elements is mentioned: [Pg.292]    [Pg.28]    [Pg.77]    [Pg.137]    [Pg.433]    [Pg.114]    [Pg.114]    [Pg.115]    [Pg.116]    [Pg.117]    [Pg.90]    [Pg.124]    [Pg.458]    [Pg.138]    [Pg.77]    [Pg.684]    [Pg.771]    [Pg.649]    [Pg.828]    [Pg.1035]    [Pg.1635]    [Pg.143]    [Pg.1]   


SEARCH



Compositional nomenclature elements

Element systematic nomenclature

Elements nomenclature searching

IUPAC nomenclature transition elements

IUPAC nomenclature transuranium elements

Nomenclature main group elements

Nomenclature systems element names

Nomenclature transuranium elements

© 2024 chempedia.info