Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic reaction intermediates

GSH may also be coupled to electrophilic reaction intermediates nonenzymatically or by GSH transferase (GST)-catalyzed reactions. Many different types of substrates will undergo GSH conjugation, including epoxides, halogenated compounds, aromatic nitro compounds, and many others. In these reactions, GSH can interact with an electrophilic carbon or heteroatom (O, N, and S) [35]. One such substrate is a reactive metabolite of acetaminophen (APAP), N-acetyl-p-benzoquinonimine (NAPQI), which will readily form a GSH conjugate (Scheme 3.2). Other examples of Phase II bioactivation reactions that lead to toxic endpoints are shown in Table 3.1. [Pg.49]

Corbett, M. D., D. R. Doerge and B. R. Corbett. 1983. Hydroxamic acid production by a-ketoglutarate dehydrogenase. Part 2. Evidence for an electrophilic reaction intermediate at the enzyme active site. J. Chem. Soc. Perkin I 1983 765-769. [Pg.179]

Trivalent carbenium ions are the key intermediates in electrophilic reactions of Tt-donor unsaturated hydrocarbons. At the same time, pen-tacoordinated carbonium ions are the key to electrophilic reactions of cr-donor saturated hydrocarbons through the ability of C-H or C-C single bonds to participate in carbonium ion formation. [Pg.149]

Unsaturated fluorocarbons are much more reactive toward nucleophiles than then hydrocarbon counterparts owing to fluorme s ability to both stabihze carban ions and mductively increase the electrophihcity of multiple bonds and aromatic nngs Nucleophihc attack dominates the chemistry of unsaturated fluorocarbons, and the role of fluonde ion in fluorocarbon chemistry is analogous to that of the proton in hydrocarbon chemistry [129] Like the related electrophilic reactions for hydrocarbons, there are fluonde-promoted isomenzations and dimenzations (equation 9), oligomenzations (equation 10), additions (equation 11), and amomc Fnedel-Crafts alkylations (equation 12) that all proceed via carbamomc intermediates [729 7 7]... [Pg.996]

Bu3SnSMe, BF3-Et20, toluene, -20° 0°, 1.5 h H30, 70-97% yield. When treated with various electrophiles, the intermediate stannanes from this reaction form benzyl and MEM ethers, benzoates, and tosylates, and when treated with PCC, they form aldehydes." " ... [Pg.51]

We call the carbocation, which exists only transiently during the course of the multistep reaction, a reaction intermediate. As soon as the intermediate is formed in the first step by reaction of ethylene with H+, it reacts further with Br in a second step to give the final product, bromoethane. This second step has its own activation energy (AG ), its own transition state, and its own energy change (AG°). We can picture the second transition state as an activated complex between the electrophilic carbocation intermediate and the nucleophilic bromide anion, in which Br- donates a pair of electrons to the positively charged carbon atom as the new C-Br bond starts to form. [Pg.160]

Yet another kind of alkene addition is the reaction of a carbene with an alkene to yield a cyclopropane. A carbene, R2C , is a neutral molecule containing a divalent carbon with only six electrons in its valence shell. It is therefore highly reactive and is generated only as a reaction intermediate, rather than as an isolable molecule. Because they re electron-deficient, carbenes behave as electrophiles and react with nucieophiiic C=C bonds. The reaction occurs in a single step without intermediates. [Pg.227]

Electrophilic addition (Intermediate is quenched, so reaction stops. ... [Pg.243]

The nitroso group, — N = Op is one of the few nonhalogens that is an ortho- and para-directing deactivator. Explain by drawing resonance structures of the carbocation intermediates in ortho, mela, and para electrophilic reaction on nitrosobenzene, C<3Hs N = 0. [Pg.593]

The decarboxylation reaction usually proceeds from the dissociated form of a carboxyl group. As a result, the primary reaction intermediate is more or less a carbanion-like species. In one case, the carbanion is stabilized by the adjacent carbonyl group to form an enolate intermediate as seen in the case of decarboxylation of malonic acid and tropic acid derivatives. In the other case, the anion is stabilized by the aid of the thiazolium ring of TPP. This is the case of transketolases. The formation of carbanion equivalents is essentially important in the synthetic chemistry no matter what methods one takes, i.e., enzymatic or ordinary chemical. They undergo C—C bond-forming reactions with carbonyl compounds as well as a number of reactions with electrophiles, such as protonation, Michael-type addition, substitution with pyrophosphate and halides and so on. In this context,... [Pg.337]

Acolbifene is also metabolized to a QM (Scheme 10.10)64 formed by oxidation at the C-17 methyl group. This QM is considerably more reactive compared to the tamoxifen quinone methide, which indicates that the acolbifene quinone methide is an electrophile of intermediate stability (Table 10.2). In addition, the acolbifene QM was determined to react with deoxynucleosides, with one of the major adducts resulting from reaction with the exocyclic amino group of adenine.64... [Pg.345]

Because of the slightly acidic nature of the sp C-H bonds, the reaction of metal acetylides with various electrophiles is one of the most general strategies in organic transformations.1 Traditionally, such reactions are carried out by using alkali metal acetylides which are air and water sensitive. On the other hand, there is much interest in developing transition-metal catalyzed terminal alkyne reactions involving soft and more stable C-M bonds as reaction intermediates, because many such reactions can tolerate water. [Pg.96]

The case for a highly electrophilic methylene intermediate in these reactions is strengthened by comparisons with the stable cationic rhenium methylene 65 (24) (see also Section II,A above) ... [Pg.161]

An interesting example of trilithiation has been reported, wherein 3-(methylthio)thiophene 36 was exposed to the powerful base system LICKOR (t-BuOK/BuLi), giving direct access to the products 37 after quenching of the intermediate 38 with suitable electrophiles. Reactions involving 2-(methylthio)thiophene gave 2,5-disubstituted products resulting from a dilithiated intermediate <06S3855>. [Pg.117]

According to the stepwise electrophilic reaction mechanism, the differences in the stereochemistries of the products from the reactions of alkenes with cyclic 49 and acyclic 51 disulfonium dications can be explained by the larger rates of the intramolecular reactions. In the case of a cyclic dication, the carbocationic center in intermediate 94, which is formed as the result of initial attack by a S-S dication on a double C=C bond reacts with nucleophile intramolecularly, thus conserving the configuration of the substituents at the double bond. On the other hand, an acyclic dication undergoes transformation to two separate particles (95 and dimethylsulfide) with a consequent loss of stereoselectivity. Additional experiments with deuteretad alkenes confirm that reaction is not stereoselective, lending further support to the stepwise mechanism (Scheme 36).106... [Pg.433]

The aziridines are the nitrogen analogs of the epoxides and undergo similar electrophilic reactions. No biological data were obtained for these compounds nor were they used as precursors to any CA-4, 7, analogs. They have been included since the synthesis is noteworthy, and they could be interesting intermediates. Xu et al. stereoselectively aziridinated chalcones using the nitrene precursor (PhINTS) and a copper catalyst to form compound 141 (Scheme 36) [82],... [Pg.51]

Presumably, the oxidative cyclization of 3 commences with direct palladation at the a position, forming o-arylpalladium(II) complex 5 in a fashion analogous to a typical electrophilic aromatic substitution (this statement will be useful in predicting the regiochemistry of oxidative additions). Subsequently, in a manner akin to an intramolecular Heck reaction, intermediate 5 undergoes an intramolecular insertion onto the other benzene ring, furnishing 6. (i-Hydride elimination of 6 then results in carbazole 4. [Pg.3]

The allenylsilanes are excellent nucleophiles and they can react with a variety of electrophilic species in annulation processes that provide access to diverse products. Allenylsilane 112 (Eq. 13.36) reacts with tropylium fluoroborate 111 to provide azu-lene 113 [35]. The reaction is slow and it is necessary to use an acid scavenger so as to inhibit protiodesilylation by the fluoroboric acid that is generated during the course of the annulation. The excess tropylium salt abstracts a hydride from the reaction intermediate leading to the azulene. There are relatively few direct methods for the synthesis of azulenes. [Pg.832]

Oxidative Polymerization Reactions. Clays can initiate polymerization of unsaturated compounds through free radical mechanisms. A free radical R", which may be formed by loss of a proton and electron transfer from the organic compound to the Lewis acid site of the clay or, alternatively, a free radical cation, R+, which may be formed by electron transfer of an electron from the organic compound to the Lewis acid site of the clay, can attack a double bond or an aromatic ring in the same manner as an electrophile. The intermediate formed is relatively stable because of resonance, but can react with another aromatic ring to form a larger, but chemically very similar, species. Repetition of the process can produce oligomers (dimers, trimers) and, eventually, polymers. [Pg.468]

The few kinetic results and the extensive product data on the electrophilic reactions of these dienes have been mainly interpreted in terms of the simplistic mechanism described in equation 1 and postulated by analogy to that established a long time ago5 for the reactions of monoethylenic compounds. According to this naive picture, an ionic intermediate with two possible limiting structures would be formed by electrophilic addition... [Pg.546]

The next step is merely a repeat instead of an electrophilic reaction with a proton, we have an electrophilic reaction with a carbocation. The reasoning is the same we get the tertiary carbocation intermediate. What then follows is loss of a proton to give an alkene, and there are two possible products, depending upon which proton is released. Both products are formed, though we would expect the more-substituted alkene to predominate. We are not asked for, or given, any information about product ratios. [Pg.640]

In both cases it may be assumed that the electron-withdrawing effect of both CFgS groups lowers the nucleophilic character of the imide nitrogen to such an extent that it is no longer able to attack—as is the rule with amines—the electrophilic reaction partner (sulfur or carbonyl carbon), but instead forms a weak bond with it. From this intermediate, as is the case with the reactions of CF Cl3 SCl ( = 0, 1, 2), compound CFsSCl and the substitution product can be formed as shown in Scheme 1. [Pg.171]


See other pages where Electrophilic reaction intermediates is mentioned: [Pg.103]    [Pg.103]    [Pg.203]    [Pg.551]    [Pg.316]    [Pg.177]    [Pg.324]    [Pg.108]    [Pg.145]    [Pg.218]    [Pg.374]    [Pg.179]    [Pg.214]    [Pg.1313]    [Pg.126]    [Pg.105]    [Pg.408]    [Pg.50]    [Pg.165]    [Pg.52]    [Pg.363]    [Pg.77]    [Pg.212]    [Pg.833]    [Pg.95]    [Pg.313]    [Pg.296]    [Pg.142]    [Pg.31]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Electrophilic addition reaction intermediate

Electrophilic addition reactions open vs bridged intermediates

Electrophilic aromatic substitution reactions intermediates

Electrophilic reactions intermediate sources

Silanes allyl, reactions with electrophilic intermediate

© 2024 chempedia.info