Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic electrode potential

We may call the electrode potential defined by the ionic energy level the ionic electrode potential, and the electrode potential defined by the electronic energy level may be called the electronic electrode potential. In the case in which the electrode has no electronic level in the energy range of our interest such as certain membrane electrodes, it is convenient to describe the system in terms of the ionic electrode potential rather than the electronic electrode potential [Refs. 4 and 5.]. [Pg.89]

The dependence of the electron-electrode potential on the concentration of solvated electrons against the background of a lithium salt in hexamethylphosphotriamide is shown in Fig. 7. It follows from this figure that the electrode behaviour obeys the Nernst equation for a single-charged particle. This is the most strict proof of the fact that in this solution thermodynamic equilibrium is established at the electrode. [Pg.179]

At low currents, the rate of change of die electrode potential with current is associated with the limiting rate of electron transfer across the phase boundary between the electronically conducting electrode and the ionically conducting solution, and is temied the electron transfer overpotential. The electron transfer rate at a given overpotential has been found to depend on the nature of the species participating in the reaction, and the properties of the electrolyte and the electrode itself (such as, for example, the chemical nature of the metal). [Pg.603]

Cyclic voltammetry provides a simple method for investigating the reversibility of an electrode reaction (table Bl.28.1). The reversibility of a reaction closely depends upon the rate of electron transfer being sufficiently high to maintain the surface concentrations close to those demanded by the electrode potential through the Nemst equation. Therefore, when the scan rate is increased, a reversible reaction may be transfomied to an irreversible one if the rate of electron transfer is slow. For a reversible reaction at a planar electrode, the peak current density, fp, is given by... [Pg.1927]

Bromine has a lower electron affinity and electrode potential than chlorine but is still a very reactive element. It combines violently with alkali metals and reacts spontaneously with phosphorus, arsenic and antimony. When heated it reacts with many other elements, including gold, but it does not attack platinum, and silver forms a protective film of silver bromide. Because of the strong oxidising properties, bromine, like fluorine and chlorine, tends to form compounds with the electropositive element in a high oxidation state. [Pg.322]

The. more tightly held an electron is. the more difficult it is to remove, hence the higher the electrode potential necessary to remove it. Make the reasonable hypothesis that the electron removed in a one-electron oxidation comes from the highest occupied orbital. HOMO. Using SHMO. determine the HOMO for ben7 ene, biphenyl, and naphthalene. [Pg.226]

A selected list of redox indicators will be found in Table 8.26. A redox indicator should be selected so that its if" is approximately equal to the electrode potential at the equivalent point, or so that the color change will occur at an appropriate part of the titration curve. If n is the number of electrons involved in the transition from the reduced to the oxidized form of the indicator, the range in which the color change occurs is approximately given by if" 0.06/n volt (V) for a two-color indicator whose forms are equally intensely colored. Since hydrogen ions are involved in the redox equilibria of many indicators, it must be recognized that the color change interval of such an indicator will vary with pH. [Pg.1160]

The standard electrode potentials , or the standard chemical potentials /X , may be used to calculate the free energy decrease —AG and the equilibrium constant /T of a corrosion reaction (see Appendix 20.2). Any corrosion reaction in aqueous solution must involve oxidation of the metal and reduction of a species in solution (an electron acceptor) with consequent electron transfer between the two reactants. Thus the corrosion of zinc ( In +zzn = —0-76 V) in a reducing acid of pH = 4 (a = 10 ) may be represented by the reaction ... [Pg.59]

Equation 10.2, which involves consumption of the metal and release of electrons, is termed an anodic reaction. Equation 10.3, which represents consumption of electrons and dissolved species in the environment, is termed a cathodic reaction. Whenever spontaneous corrosion reactions occur, all the electrons released in the anodic reaction are consumed in the cathodic reaction no excess or deficiency is found. Moreover, the metal normally takes up a more or less uniform electrode potential, often called the corrosion or mixed potential (Ecotr)-... [Pg.110]

The thermodynamic and electrode-kinetic principles of cathodic protection have been discussed at some length in Section 10.1. It has been shown that, if electrons are supplied to the metal/electrolyte solution interface, the rate of the cathodic reaction is increased whilst the rate of the anodic reaction is decreased. Thus, corrosion is reduced. Concomitantly, the electrode potential of the metal becomes more negative. Corrosion may be prevented entirely if the rate of electron supply is such that the potential of the metal is lowered to the value where it is found that anodic dissolution does not occur. This may not necessarily be the potential at which dissolution is thermodynamically impossible. [Pg.135]

When two different metals are immersed in the same electrolyte solution they will usually exhibit different electrode potentials. If they are then connected by an electronic conductor there will be a tendency for the potentials of the two metals to move towards one another they are said to mutually polarise. The polarisation will be accompanied by a flow of ionic current through the solution from the more negative metal (the anode) to the more positive metal (the cathode), and electrons will be transferred through the conductor from the anode to the cathode. Thus the cathode will benefit from the supply of electrons, in that it will dissolve at a reduced rate. It is said to be cathodically protected . Conversely, in supplying electrons to the cathode the anode will be consumed more rapidly, and thus will act as a sacrificial anode. [Pg.135]

The two elements have similar electronegativity. (Note electronegativity is the power of an element to attract electrons to itself when present in a molecule or in an aggregate of unlike atoms it is a different property from the electrode potential, which depends on the free energy difference between an element in its standard state and a compound or ion in solution (see Section 20.1).) In addition a metal of a lower valency tends to dissolve a metal of a higher valency more readily than vice versa. [Pg.1273]

The standard electrode potential is a quantitative measure of the readiness of the element to lose electrons. It is therefore a measure of the strength of the element as a reducing agent in aqueous solution the more negative the potential of the element, the more powerful is its action as a reductant. [Pg.63]

The reductant differs from the oxidant merely by n electrons, and together they form an oxidation-reduction system. Consider the reversible reduction of an oxidant to a reductant at a dropping mercury cathode. The electrode potential is given by ... [Pg.599]

Alkali and alkaline-earth metals have the most negative standard reduction potentials these potentials are (at least in ammonia, amines, and ethers) more negative than that of the solvated-electron electrode. As a result, alkali metals (M) dissolve in these highly purified solvents [9, 12] following reactions (1) and (2) to give the well-known blue solutions of solvated electrons. [Pg.420]

These reactions proceed to equilibrium when the potential of the solvated-electron electrode equals that of the alkali metal L13] ... [Pg.420]

Controlled-potential (potentiostatic) techniques deal with the study of charge-transfer processes at the electrode-solution interface, and are based on dynamic (no zero current) situations. Here, the electrode potential is being used to derive an electron-transfer reaction and the resultant current is measured. The role of the potential is analogous to that of the wavelength in optical measurements. Such a controllable parameter can be viewed as electron pressure, which forces the chemical species to gain or lose an electron (reduction or oxidation, respectively). [Pg.2]

The values of Hn and E are zero for water, by virtue of the constants 1.74 and 2.60. In these definitions, pKa refers to the acid ionization constant of the conjugate acid of the nucleophile, and E° to the standard electrode potential for the two-electron half-reaction ... [Pg.231]

Equation (22) shows that since electrode potentials measure electronic energies, their zero level is the same as that for electronic energy. Equation (22) expresses the possibility of a comparison between electrochemical and UHV quantities. Since the definition of 0 is6 the minimum work to extract an electron from the Fermi level of a metal in a vacuum, the definition of electrode potential in the UHV scale is the minimum work to extract an electron from the Fermi level of a metal covered by a (macroscopic) layer of solvent. ... [Pg.11]

Electrode potentials are customarily tabulated on the standard hydrogen electrode (SHE) scale (although the SHE is never actually used experimentally because it is inconvenient in many respects). Therefore, conversion of potentials into the UHV scale requires the determination of E°(H+/H2) vs. UHV. According to the concepts developed above, such a potential would measure the energy of electrons in the Pt wire of the hydrogen electrode, modified by the contact with the solution. [Pg.13]

Equation (17) shows the relationship between electrode potentials and electronic energy. The electrode potential is measured by the electron work function of the metal, modified by the contact with the solution (solvent). This establishes a straightforward link, not only conceptually but also experimentally, between electrochemical and UHV situations.6,32 In many cases, electrochemical interfaces are synthesized in UHV conditions55-58 by adding the various components separately, with the aim possibly of disentangling the different contributions. While the situation can be qualitatively reproduced, it has been shown above that there may be quantitative differences that are due to the actual stmctural details. [Pg.18]


See other pages where Electronic electrode potential is mentioned: [Pg.103]    [Pg.198]    [Pg.531]    [Pg.540]    [Pg.652]    [Pg.198]    [Pg.103]    [Pg.198]    [Pg.531]    [Pg.540]    [Pg.652]    [Pg.198]    [Pg.922]    [Pg.1922]    [Pg.2751]    [Pg.100]    [Pg.134]    [Pg.352]    [Pg.526]    [Pg.507]    [Pg.367]    [Pg.69]    [Pg.43]    [Pg.227]    [Pg.1206]    [Pg.125]    [Pg.112]    [Pg.229]    [Pg.91]    [Pg.106]    [Pg.4]    [Pg.71]   
See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.540 ]




SEARCH



Electronic potentials

© 2024 chempedia.info