Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic absorption resonance

Hu, Y., Heshimoto, H., Moie, G., Hengartner, U., and Koyama, Y. 1997. Unique properties of the ll-cis and 11,11 -di-civ isomers of P-carotene as revealed by electronic absorption, resonance Raman and 1H and 13C NMR spectroscopy and by HPLC analysis of their thermal isomerization. J. Chem. Soc. Perkin Trans. 2 2699-2710. [Pg.134]

Wasbotten IH, Wondimagegn T, Ghosh A (2002) Electronic absorption, resonance raman, and electrochemical studies of planar and saddled copper(III) mesw-triarylcorroles highly substituent-sensitive soret bands as a distinctive feature of high-valent transition-metal corroles. J Am Chem Soc 124 8104-8116... [Pg.88]

Lutz M, Szponarski W, Berger G, Robert B and Neuman JM (1987) The stereoisomerism of bacterial, reaction-center-bound carotenoids revisited an electronic absorption, resonance Raman and H-NMR study. Biochim Biophys Acta 894 423-433... [Pg.121]

This is known as Riaczek s approximation and is only valid at transparent laser frequencies, i.e. well away from electronic absorption resonances [9,10,12], Thus the susceptibility (4,17) becomes... [Pg.267]

This spectrum is called a Raman spectrum and corresponds to the vibrational or rotational changes in the molecule. The selection rules for Raman activity are different from those for i.r. activity and the two types of spectroscopy are complementary in the study of molecular structure. Modern Raman spectrometers use lasers for excitation. In the resonance Raman effect excitation at a frequency corresponding to electronic absorption causes great enhancement of the Raman spectrum. [Pg.340]

RRS has also introduced the concept of a Raman excitation profile (REPy for thefth mode) [46, 4lZ, 48, 49, 50 and M]. An REP. is obtained by measuring the resonance Raman scattering strength of thefth mode as a fiinction of the excitation frequency [, 53]. Flow does the scattering intensity for a given (thefth) Raman active vibration vary with excitation frequency within an electronic absorption band In turn, this has led to transfomi theories that try to predict... [Pg.1200]

One group has successfiilly obtained infonnation about potential energy surfaces without measuring REPs. Instead, easily measured second derivative absorption profiles are obtained and linked to the fiill RRS spectrum taken at a single incident frequency. In this way, the painstaking task of measuring a REP is replaced by carefiilly recording the second derivative of the electronic absorption spectrum of the resonant transition [, 59],... [Pg.1201]

The dielectric permittivity as a function of frequency may show resonance behavior in the case of gas molecules as studied in microwave spectroscopy (25) or more likely relaxation phenomena in soUds associated with the dissipative processes of polarization of molecules, be they nonpolar, dipolar, etc. There are exceptional circumstances of ferromagnetic resonance, electron magnetic resonance, or nmr. In most microwave treatments, the power dissipation or absorption process is described phenomenologically by equation 5, whatever the detailed molecular processes. [Pg.338]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

Electron spin resonance (esr) (6,44) has had more limited use in coal studies. A rough estimate of the free-radical concentration or unsatisfied chemical bonds in the coal stmcture has been obtained as a function of coal rank and heat treatment. For example, the concentration increases from 2 X 10 radicals/g at 80 wt % carbon to a sharp peak of about 50 x 10 radicals/g at 95 wt % carbon content and drops almost to zero at 97 wt % carbon. The concentration of these radicals is less than that of the common functional groups such as hydroxyl. However, radical existence seems to be intrinsic to the coal molecule and may affect the reactivity of the coal as well as its absorption of ultraviolet radiation. Measurements from room... [Pg.220]

APPENDIX 8 P0LAR0GRAPHIC HALF-WAVE POTENTIALS 835 APPENDIX 9 RESONANCE LINES FOR ATOMIC ABSORPTION 837 APPENDIX 10 ELECTRONIC ABSORPTION CHARACTERISTICS OF SOME COMMON CHROMOPHORES 838... [Pg.899]

Resonance Raman (RR) spectroscopy provides information about the vibrational characteristics of a chromophore, for example, a metal center, within the complex environment of a protein. In RR spectra, those vibrational transitions are observed selectively that are coupled to electronic transitions. In iron sulfur proteins, this technique has been used to resolve the complex electronic absorption spectra and to identify both vibrational and electronic transitions. [Pg.119]

The electronic absorption spectra of the products of one-electron electrochemical reduction of the iron(III) phenyl porphyrin complexes have characteristics of both iron(II) porphyrin and iron(III) porphyrin radical anion species, and an electronic structure involving both re.sonance forms Fe"(Por)Ph] and tFe "(Por—)Ph has been propo.sed. Chemical reduction of Fe(TPP)R to the iron(II) anion Fe(TPP)R) (R = Et or /7-Pr) was achieved using Li BHEt3 or K(BH(i-Bu)3 as the reductant in benzene/THF solution at room temperature in the dark. The resonances of the -propyl group in the F NMR spectrum of Fe(TPP)(rt-Pr) appear in the upfield positions (—0.5 to —6.0 ppm) expected for a diamagnetic porphyrin complex. This contrasts with the paramagnetic, 5 = 2 spin state observed... [Pg.248]

Porphyrin is a multi-detectable molecule, that is, a number of its properties are detectable by many physical methods. Not only the most popular nuclear magnetic resonance and light absorption and emission spectroscopic methods, but also the electron spin resonance method for paramagnetic metallopor-phyrins and Mossbauer spectroscopy for iron and tin porphyrins are frequently used to estimate the electronic structure of porphyrins. By using these multi-detectable properties of the porphyrins of CPOs, a novel physical phenomenon is expected to be found. In particular, the topology of the cyclic shape is an ideal one-dimensional state of the materials used in quantum physics [ 16]. The concept of aromaticity found in fuUerenes, spherical aromaticity, will be revised using TT-conjugated CPOs [17]. [Pg.70]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

Particularly for thin Mossbauer absorbers with a low concentration of the resonance nuclide and high mass absorption, it may be problematic to apply the recommendation for sample preparation (f 0.2), because the resulting electronic absorption may be prohibitively high. In such a case, it may pay well to optimize the absorber thickness, i.e., the area density f. To this end, following the approach of Long et al. [33], we adopt the general expression ... [Pg.49]


See other pages where Electronic absorption resonance is mentioned: [Pg.1265]    [Pg.67]    [Pg.201]    [Pg.1265]    [Pg.67]    [Pg.201]    [Pg.584]    [Pg.1151]    [Pg.1200]    [Pg.402]    [Pg.445]    [Pg.450]    [Pg.318]    [Pg.195]    [Pg.220]    [Pg.250]    [Pg.14]    [Pg.415]    [Pg.667]    [Pg.163]    [Pg.309]    [Pg.319]    [Pg.281]    [Pg.328]    [Pg.578]    [Pg.44]    [Pg.33]    [Pg.174]    [Pg.6]    [Pg.46]    [Pg.190]    [Pg.46]    [Pg.774]    [Pg.124]    [Pg.248]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Absorption resonance

Absorption, electron paramagnetic resonance

Electron absorption

Electronic absorption

© 2024 chempedia.info