Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer reactions anions

Singh and Palkar [726] identified an initial deceleratory reaction in the decomposition of silver fulminate. This obeyed first-order kinetics (E = 27 kJ mole-1) and overlapped with the acceleratory period of the main reaction, which obeyed the power law [eqn. (2), n = 2] with E = 119 kj mole-1. The mechanism proposed included the suggestion that two-dimensional growth of nuclei involved electron transfer from anion to metal. [Pg.166]

Here, the relative stability of the anion radical confers to the cleavage process a special character. Thus, at a mercury cathode and in organic solvents in the presence of tetraalkylammonium salts, the mechanism is expected16 to be an ECE one in protic media or in the presence of an efficient proton donor, but of EEC type in aprotic solvents. In such a case, simple electron-transfer reactions 9 and 10 have to be associated chemical reactions and other electron transfers (at the level of the first step). Those reactions are shown below in detail ... [Pg.1006]

Kattenberg and coworkers54 studied the chlorination of a-lithiated sulfones with hexachloroethane. These compounds may react as nucleophiles in a nucleophilic substitution on halogen (path a, Scheme 5) or in an electron transfer reaction (path b, Scheme 5) leading to the radical anions. The absence of proof for radical intermediates (in particular, no sulfone dimers detected) is interpreted by these authors in favour of a SN substitution on X. [Pg.1058]

It is apparent that, as in chemical systems, the magnitude of these effects will become useful and interesting from a practical viewpoint only when the pressure is increased above one kilobar. Thus for a typical electron transfer reaction with JF"=—20 cm mole , AE will be 211 mV when the pressme is ten kilobars. This shift could be important in the not uncommon situation where, at atmospheric pressure, the oxidation of a neutral substrate occurs at around the same potential as the anion of the base electrolyte. An increase in the pressure to ten kilobars will result in a separation of the processes... [Pg.206]

On the other hand. Type II process competes efficiently with the electron-transfer pathway in aerobic environments where the concentration of ground triplet state molecular oxygen is relatively high ( 0.27 mM), and singlet molecular oxygen (1O2) is the most abimdant ROS generated under these conditions, with a quantum yield 0.48 (Valle et al., 2011), eqn. 8. It is also possible an electron-transfer reaction from 3RF to 02 to form anion superoxide, but this reaction occurs with very low efficiency <0.1% (Lu et al., 2000). [Pg.12]

Metallic iron is made up of neutral iron atoms held together by shared electrons (see Section 10.7). The formation of rust involves electron-transfer reactions. Iron atoms lose three electrons each, forming Fe cations. At the same time, molecular oxygen gains electrons from the metal, each molecule adding four electrons to form a pair of oxide anions. As our inset figure shows, the Fe cations combine with O anions to form insoluble F 2 O3, rust. Over time, the surface of an iron object becomes covered with flaky iron(ni) oxide and pitted from loss of iron atoms. [Pg.1350]

It has been reported that Cgo and its derivatives form optically transparent microscopic clusters in mixed solvents [25, 26]. Photoinduced electron-transfer and photoelectrochemical reactions using the C o clusters have been extensively reported because of the interesting properties of C o clusters [25,26]. The M F Es on the decay of the radical pair between a Cgo cluster anion and a pyrene cation have been observed in a micellar system [63]. However, the MFEs on the photoinduced electron-transfer reactions using the Cgo cluster in mixed solvents have not yet been studied. [Pg.270]

Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...
EPR techniques were used to show (Polyakov et al. 2001a) that one-electron transfer reactions occur between carotenoids and the quinones, 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ), and tetrachlorobenzoquinone (CA). A charge-transfer complex (CTC) is formed with a -values of 2.0066 and exists in equilibrium with an ion-radical pair (Car Q ). Increasing the temperature from 77 K gave rise to a new five-line signal with g=2.0052 and hyperfine couplings of 0.6 G due to the DDQ radical anions. At room temperature a stable radical with y=2.0049 was detected, its... [Pg.164]

Minero, C., Mariella, G., Maurino, V., and Pelizzetti, E. (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir,... [Pg.124]

The ability of a nitro group in the substrate to bring about electron-transfer free radical chain nucleophilic substitution (SrnI) at a saturated carbon atom is well documented.39 Such electron transfer reactions are one of the characteristic features of nitro compounds. Komblum and Russell have established the SrnI reaction independently the details of the early history have been well reviewed by them.39 The reaction of p-nitrobenzyl chloride with a salt of nitroalkane is in sharp contrast to the general behavior of the alkylation of the carbanions derived from nitroalkanes here, carbon alkylation is predominant. The carbon alkylation process proceeds via a chain reaction involving anion radicals and free radicals, as shown in Eq. 5.24 and Scheme... [Pg.133]

Carbon alkylation of simple nitronate anions is also possible by the reaction with /V-substi-tuted pyridiniums, as exemplified in Eq. 5.41. Such types of reactions are classified as Srm2 reactions, in which electron transfer reactions from nitronate anions to pyridiniums are involved as key steps.59... [Pg.137]

Thus, if the lifetime of a spin state is 81, the energy level is broadened by an amount H/81, with consequences for ESR line widths. Ward and Weissman1 added some unreduced naphthalene to a solution of the radical anion, and, from the observed broadening, computed 81, and from 8/ the rate constant for the electron transfer reaction ... [Pg.92]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

The importance of radical ions and electron-transfer reactions has been pointed out in the preceding sections (see also p. 128). Thus, in linear hydrazide chemiluminescence (p. 103) or acridine aldehyde or ketone chemiluminescence, the excitation steps consist in an electron transfer from a donor of appropriate reduction potential to an acceptor in such a way that the electron first occupies the lowest antibonding orbital, as in the reaction of 9-anthranoyl peroxide 96 with naphthalene radical anion 97 142> ... [Pg.119]

Energetic electron transfer reactions between electrochemically generated, shortlived, radical cations and anions of polyaromatic hydrocarbons are often accompanied by the emission of light, due to the formation of excited species. Such ECL reactions are carried out in organic solvents such as dimethylformamide or acetonitrile, with typically a tetrabutylammonium salt as a supporting electrolyte. The general mechanism proposed for these reactions is as follows. [Pg.215]

Self-reactions of semiquinone radical anions proceed via electron transfer reaction [2]. [Pg.538]

At first sight, these strong effects might not seem to be predictable, given that the ferrocene reactant is uncharged and thus the formation of the precursor complex should be unaffected by the charge of the other reactant. The reaction of the ion-paired species, however, is not a simple electron-transfer reaction, because transfer of the anion must also occur. A detailed understanding of the dynamics of the process remains to be developed. [Pg.359]

The simplest electrodimerization mechanism occurs when the species formed as the result of a first electron transfer reaction reacts with itself to form a dimer (Scheme 2.7). This mechanism is usually termed radical-radical dimerization (RRD) because the most extensive studies where it occurs have dealt with the dimerization of anion and cation radicals formed upon a first electron transfer step as opposed to the case of radical-substrate dimerizations, which will be discussed subsequently. It is a bimolecular version of the EC mechanism. The bimolecular character of the follow-up reaction leads to nonlinear algebra and thus complicates slightly the analysis and numerical computation of the system. The main features of the cyclic voltammetric responses remain qualitatively similar, however. Unlike the EC case, however, the dimensionless parameter,... [Pg.103]

It is also assumed (Hoffmann 1990) that the adsorbed sulfite is oxidized by the valence band holes, h+b, that are formed through absorption of light with photon energies exceeding the band-gap energy (ca. 2.2 eV) of an iron(III)(hydr)oxide, e.g., hematite (a-Fe203). This interfacial electron transfer reaction results in formation of the SO radical anion which reacts with another radical to form S20 , one of the end product, if the reaction is carried out under nitrogen. [Pg.355]

An Alternative Mechanism. Considering the facility of the electron transfer reactions to which a great deal of this symposium has been devoted, we have to worry whether our "proton transfer" reactions may not really be the result of electron transfer in the reverse direction followed by hydrogen transfer. As Bergman (26) has recently reported that another hydride anion may act as a one-electron reducing agent, and as we have evidence implicating 0s(C0) H as an intermediate in a number of... [Pg.410]


See other pages where Electron transfer reactions anions is mentioned: [Pg.237]    [Pg.231]    [Pg.705]    [Pg.1004]    [Pg.1063]    [Pg.705]    [Pg.1004]    [Pg.1063]    [Pg.160]    [Pg.96]    [Pg.410]    [Pg.653]    [Pg.648]    [Pg.288]    [Pg.92]    [Pg.178]    [Pg.70]    [Pg.148]    [Pg.301]    [Pg.127]    [Pg.177]    [Pg.241]    [Pg.41]    [Pg.97]    [Pg.225]    [Pg.108]    [Pg.114]   
See also in sourсe #XX -- [ Pg.535 ]




SEARCH



Anion transfer

Electron anions

© 2024 chempedia.info