Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-Transfer Neutralization

The electron-transfer reaction N2H (N2D ) + M-) N2H (N2D ) + M (M = Na, K, Mg, or Zn) was studied using an ion-beam target-gas technique. Following electron impact ionization of N2-H2(D2) mixtures (ca. 1 Torr) at temperatures from 100 to 300 K, the N2H (N2D ) ions were accelerated to 5 keV and focused into a chamber containing a few mTorr of [Pg.30]


There are no direct observations of the N2H radical. Indirect evidence for its formation was obtained from experimental studies on the reaction NH2 +NOproducts and on the electron-transfer neutralization of N2H. Theoretical arguments for its existence were once provided by kinetic models of ammonia combustion. [Pg.1]

Figrue BE 16.20 shows spectra of DQ m a solution of TXlOO, a neutral surfactant, as a function of delay time. The spectra are qualitatively similar to those obtained in ethanol solution. At early delay times, the polarization is largely TM while RPM increases at later delay times. The early TM indicates that the reaction involves ZnTPPS triplets while the A/E RPM at later delay times is produced by triplet excited-state electron transfer. Calculation of relaxation times from spectral data indicates that in this case the ZnTPPS porphyrin molecules are in the micelle, although some may also be in the hydrophobic mantle of the micelle. Furtlier,... [Pg.1614]

Dicarbocyanine and trie arbo cyanine laser dyes such as stmcture (1) (n = 2 and n = 3, X = oxygen) and stmcture (34) (n = 3) are photoexcited in ethanol solution to produce relatively long-Hved photoisomers (lO " -10 s), and the absorption spectra are shifted to longer wavelength by several tens of nanometers (41,42). In polar media like ethanol, the excited state relaxation times for trie arbo cyanine (34) (n = 3) are independent of the anion, but in less polar solvent (dichloroethane) significant dependence on the anion occurs (43). The carbocyanine from stmcture (34) (n = 1) exists as a tight ion pair with borate anions, represented RB(CgH5 )g, in benzene solution photoexcitation of this dye—anion pair yields a new, transient species, presumably due to intra-ion pair electron transfer from the borate to yield the neutral dye radical (ie, the reduced state of the dye) (44). [Pg.398]

The possible mechanism of ionization, fragmentation of studied compound as well as their desoi ption by laser radiation is discussed. It is shown that the formation of analyte ions is a result of a multi stage complex process included surface activation by laser irradiation, the adsoi ption of neutral analyte and proton donor molecules, the chemical reaction on the surface with proton or electron transfer, production of charged complexes bonded with the surface and finally laser desoi ption of such preformed molecules. [Pg.103]

Flavin coenzymes can exist in any of three different redox states. Fully oxidized flavin is converted to a semiqulnone by a one-electron transfer, as shown in Figure 18.22. At physiological pH, the semiqulnone is a neutral radical, blue in color, with a A ax of 570 nm. The semiqulnone possesses a pAl of about 8.4. When it loses a proton at higher pH values, it becomes a radical anion, displaying a red color with a A ax of 490 nm. The semiqulnone radical is particularly stable, owing to extensive delocalization of the unpaired electron across the 77-electron system of the isoalloxazine. A second one-electron transfer converts the semiqulnone to the completely reduced dihydroflavin as shown in Figure 18.22. [Pg.591]

The proposed mechanism for the conversion of the furanone 118 to the spiro-cyclic lactones 119 and 120 involves electron transfer to the a -unsaturated methyl ester electrophore to generate an anion radical 118 which cyclizes on the /3-carbon of the furanone. The resulting radical anion 121 acquires a proton, giving rise to the neutral radical 122, which undergoes successive electron transfer and protonation to afford the lactones 119 and 120 (Scheme 38) (91T383). [Pg.130]

Cyclic and acyclic silyl enol ethers can be nitrated with tetranitromethane to give ct-nitro ketones in 64-96% yield fEqs. 2.42 and 2.43. " The mechanism involves the electron transfer from the silyl enol ether to tetranitromethane. A fast homolydc conphng of the resultant cadon radical of silyl enol ether with NO leads tn ct-nitro ketones. Tetranitromethane is a neutral reagent it is commercially available or readdy prepared. " ... [Pg.16]

MEH-PPV and P3MBET, were used. As a measure of the efficiency of the photo-induced charge transfer, the degree of luminescence quenching and the ratio of the charged photoexcitation bands to the neutral photoexcitation bands were taken. These two numbers are plotted in Figure 15-15 versus the electrochemical reduction potential. A maximum in the photoinduced electron transfer was determined for Cbo. [Pg.593]

Recently, Weissman and his colleagues52 showed that the product is paramagnetic indicating that it results from an electron transfer process giving one unpaired electron to the hydrocarbon ion. Furthermore, they demonstrated30 that electron transfer reactions easily proceed in systems containing aromatic" ions and neutral aromatic hydrocarbon molecules, e.g., naphthalene" + phenathrene - naphthalene -j- phenanthrene". [Pg.154]

It lias also been suggested that photoexcited benzoyl peroxide is somewhat more susceptible to induced decomposition processes involving electron transfer than the ground state molecule. Rosenthal et c//.15 reported on redox reactions with certain salts (including benzoate ion) and neutral molecules (e.g. alcohols). [Pg.84]

Reactions of D with D20 and of 0 with 02, N20, and N02 have been studied with a magnetic sector mass spectrometer. Competition between electron transfer and ion-atom interchange has been observed in the production of 02 by reaction of 0 with 02, an endothermic reaction. The negative ion of the reacting neutral molecule is formed in 02, N2Of and N02 but not in D20. Rate constants have been estimated as a function of repeller potential. [Pg.34]

It is apparent that, as in chemical systems, the magnitude of these effects will become useful and interesting from a practical viewpoint only when the pressure is increased above one kilobar. Thus for a typical electron transfer reaction with JF"=—20 cm mole , AE will be 211 mV when the pressme is ten kilobars. This shift could be important in the not uncommon situation where, at atmospheric pressure, the oxidation of a neutral substrate occurs at around the same potential as the anion of the base electrolyte. An increase in the pressure to ten kilobars will result in a separation of the processes... [Pg.206]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

In the condensed state, unfortunately, practically nothing is known about the consequences of the Auger effect, although there is reason to believe that charge neutralization by electron transfer between neighboring... [Pg.212]


See other pages where Electron-Transfer Neutralization is mentioned: [Pg.66]    [Pg.47]    [Pg.238]    [Pg.271]    [Pg.271]    [Pg.913]    [Pg.1]    [Pg.30]    [Pg.66]    [Pg.47]    [Pg.238]    [Pg.271]    [Pg.271]    [Pg.913]    [Pg.1]    [Pg.30]    [Pg.1925]    [Pg.2802]    [Pg.308]    [Pg.20]    [Pg.265]    [Pg.263]    [Pg.414]    [Pg.447]    [Pg.156]    [Pg.188]    [Pg.84]    [Pg.241]    [Pg.227]    [Pg.118]    [Pg.100]    [Pg.808]    [Pg.422]    [Pg.62]    [Pg.490]    [Pg.232]    [Pg.161]    [Pg.194]    [Pg.7]    [Pg.27]    [Pg.14]    [Pg.192]    [Pg.247]    [Pg.182]   


SEARCH



Electron neutrality

Electron-transfer reactions with neutral metal compounds

© 2024 chempedia.info