Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron amide

This reaction is achievable with a large palette of nucleophiles such as nitriles, cyanide, R-metal compounds, malonates, P(OR)3, as well as olefins enriched in electrons. Amides (e.g. dimethylformamide) as well as /V-carbo-alkoxyamines [41] can also be efficiently substituted by nucleophiles (two-electron oxidations). [Pg.337]

If alkyl groups are attached to the ylide carbon atom, cis-olefins are formed at low temperatures with stereoselectivity up to 98Vo. Sodium bis(trimethylsilyl)amide is a recommended base for this purpose. Electron withdrawing groups at the ylide carbon atom give rise to trans-stereoselectivity. If the carbon atom is connected with a polyene, mixtures of cis- and rrans-alkenes are formed. The trans-olefin is also stereoseiectively produced when phosphonate diester a-carbanions are used, because the elimination of a phosphate ester anion is slow (W.S. Wadsworth, 1977). [Pg.30]

Terminal alkynes are only reduced in the presence of proton donors, e.g. ammonium sulfate, because the acetylide anion does not take up further electrons. If, however, an internal C—C triple bond is to be hydrogenated without any reduction of terminal, it is advisable to add sodium amide to the alkyne solution Hrst. On catalytic hydrogenation the less hindered triple bonds are reduced first (N.A. Dobson, 1955, 1961). [Pg.100]

S—Cg is perpendicular to the amide plane of the / -lactam and therefore weakened. The S—bond, on the other hand, is not affected by electronic interactions with the benzamide plane. It was now thought, that a bridging of the thiazolidine moiety would bring the —S bond into a more orthogonal position with respect to the amide plane of the new lactam and make this bond more fragile. The tricyclic thiazolidine was synthesized as described above and fulfilled the predictions (J.E. Baldwin, 1978). [Pg.315]

Aldehydes are more generally prepared by electrolytic reduction of amides, the reduction of carboxylic adds being possible only when they are activated by a strongly electron-withdrawing group (58). [Pg.525]

Electron release from nitrogen stabilizes the carbonyl group of amides and decreases the rate at which nucleophiles attack the carbonyl carbon... [Pg.836]

The negatively charged oxygen substituent is a powerful electron donor to the carbonyl group Resonance m carboxylate anions is more effective than resonance m carboxylic acids acyl chlorides anhydrides thioesters esters and amides... [Pg.836]

Nitrogen is a better electron parr donor than oxygen and amides have a more stabilized carbonyl group than esters and anhydrides Chlorine is the poorest electron pair donor and acyl chlorides have the least stabi lized carbonyl group and are the most reactive... [Pg.874]

Very strong bases such as sodium or potassium amide react readily with aryl halides even those without electron withdrawing substituents to give products corresponding to nucleophilic substitution of halide by the base... [Pg.981]

Acrylamide, C H NO, is an interesting difiinctional monomer containing a reactive electron-deficient double bond and an amide group, and it undergoes reactions typical of those two functionalities. It exhibits both weak acidic and basic properties. The electron withdrawing carboxamide group activates the double bond, which consequendy reacts readily with nucleophilic reagents, eg, by addition. [Pg.133]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

A variety of olefins or aromatic compounds having electron-donating substituents are known to undergo C—H iasertion reactions with isocyanates to form amides (36,37). Many of these reactions are known to iavolve cycHc iatermediates. [Pg.449]

Reactions. The chemical properties of cyanoacetates ate quite similar to those of the malonates. The carbonyl activity of the ester function is increased by the cyano group s tendency to withdraw electrons. Therefore, amidation with ammonia [7664-41-7] to cyanoacetamide [107-91-5] (55) or with urea to cyanoacetylurea [448-98-2] (56) proceeds very easily. An interesting reaction of cyanoacetic acid is the Knoevenagel condensation with aldehydes followed by decarboxylation which leads to substituted acrylonitriles (57) such as (29), or with ketones followed by decarboxylation with a shift of the double bond to give P,y-unsaturated nitriles (58) such as (30) when cyclohexanone [108-94-1] is used. [Pg.470]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

The enzyme catalyzes the hydrolysis of an amide bond linkage with water via a covalent enzyme-inhibitor adduct. Benzoxazinones such as 2-ethoxy-4H-3,l-benzoxazin-4-one [41470-88-6] (23) have been shown to completely inactivate the enzyme in a competitive and stoichiometric fashion (Eigure 5). The intermediate (25) is relatively stable compared to the enzyme-substrate adduct due to the electron-donating properties of the ortho substituents. The complex (25) has a half-life of reactivation of 11 hours. [Pg.324]

Pteridinetriones exist as anhydrous species because the tt-electron deficiency is largely compensated by the electron-releasing hydroxy groups. The acidic properties of the amide functions and the sequence of ionization of the acidic protons have been determined in most polyoxopteridines by measurements of the piTa values and comparison of spectral... [Pg.272]

When hydroxypteridines are considered, it must be borne in mind that these compounds exist principally in the pteridinone forms, containing thermodynamically stable amide functions, and consequently have low reactivity. Their stability towards acid and alkali correlates well with the number of electron-donating groups which apparently redress the deficit of ir-electrons located at the ring nitrogen atoms. Quantitative correlations can be seen in the decomposition studies of various pteridinones (Table 7). These results are consistent with the number of the oxy functions and their site at the pteridine nucleus. The... [Pg.295]

In some cases, especially in the presence of strongly electron attracting substituents, isomerization to acid amides has been observed, probably preceded by deprotonation at ring carbon. Even (56), known for its stability towards common alkali, undergoes this rearrangement when a lithium amide is used as the base (80JOC1489). [Pg.208]

Other isocyanates undergo [2 + 2] cycloaddition, but only with very electron rich alkenes. Thus phenyl isocyanate gives /3-lactams with ketene acetals and tetramethoxyethylene. With enamines, unstable /3-lactams are formed if the enamine has a /3-H atom, ring opened amides are produced 2 1 adducts are also found. Photochemical addition of cis- and traH5-stilbene to phenyl isocyanate has also been reported (72CC362). [Pg.261]


See other pages where Electron amide is mentioned: [Pg.96]    [Pg.313]    [Pg.96]    [Pg.313]    [Pg.30]    [Pg.105]    [Pg.315]    [Pg.431]    [Pg.92]    [Pg.1127]    [Pg.1130]    [Pg.404]    [Pg.226]    [Pg.228]    [Pg.513]    [Pg.79]    [Pg.41]    [Pg.158]    [Pg.332]    [Pg.69]    [Pg.476]    [Pg.60]    [Pg.60]    [Pg.77]    [Pg.174]    [Pg.277]    [Pg.294]    [Pg.298]    [Pg.304]    [Pg.306]    [Pg.36]    [Pg.301]    [Pg.790]   
See also in sourсe #XX -- [ Pg.568 ]




SEARCH



Amides electronic spectra

Electronic structure, amide group

© 2024 chempedia.info