Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes, preferential

Because some substances may preferentially adsorb onto the surface of the electrode, the composition near the iaterface differs from that ia the bulk solution. If the cell current is 2ero, there is no potential drop from ohmic resistance ia the electrolyte or the electrodes. Yet from the thermodynamic analysis it is seen that there is a measurable cell potential. The question from where this potential arises can be answered by considering the iaterface. [Pg.63]

For the corrosion process to proceed, the corrosion cell must contain an anode, a cathode, an electrolyte and an electronic conductor. When a properly prepared and conditioned mud is used, it causes preferential oil wetting on the metal. As the metal is completely enveloped and wet by an oil environment that is electrically nonconductive, corrosion does not occur. This is because the electric circuit of the corrosion cell is interrupted by the absence of an electrolyte. Excess calcium hydroxide [Ca(OH)j] is added as it reacts with hydrogen sulfide and carbon dioxide if they are present. The protective layer of oil film on the metal is not readily removed by the oil-wet solids as the fluid circulates through the hole. [Pg.1336]

In contrast chemical and electrolytic polishing enables a smooth level surface to be produced without any residual stress being developed in the surface because the surface is removed by dissolution at relatively low chemical potential and at relatively low rates is such a way that metallic surface asperities are preferentially removed. For this to be most effective the solution properties must be optimised and the pretreatment must leave an essentially bare metal surface for attack by the electrolyte. [Pg.300]

An aqueous electrolyte solution consists of a variety of charged and uncharged species, e.g. cations, anions, water dipoles, organic molecules, trace impurities, etc. which under equilibrium conditions are randomly oriented so that within the solution there is no net preferentially directed field. However, under the influence of a potential difference, the charge will be transported through the solution by cations and anions that migrate to... [Pg.1165]

The main problem in the study of the role of these parameters in electrolyte conductivity is their interdependence. A change in composition of a binary solvent changes viscosity, along with the permittivity, ion-ion association, and ion solvation, which may be preferential for one of the two solvents and therefore also changes the Stokes radii of the ions. [Pg.486]

Very little work has been done in this area. Even electrolyte transport has not been well characterized for multicomponent electrolyte systems. Multicomponent electrochemical transport theory [36] has not been applied to transport in lithium-ion electrolytes, even though these electrolytes consist of a blend of solvents. It is easy to imagine that ions are preferentially solvated and ion transport causes changes in solvent composition near the electrodes. Still, even the most sophisticated mathematical models [37] model transport as a binary salt. [Pg.561]

Figure 7.7 In a strong electrolyte solution, negative ions are preferentially surrounded by positive ions while the positive ions are surrounded by negative ions. Figure 7.7 In a strong electrolyte solution, negative ions are preferentially surrounded by positive ions while the positive ions are surrounded by negative ions.
Electrochemical oxidation of 4-aryl-substituted thiane in aqueous organic solvents containing various halide salts as electrolytes gave selectively the trans-sulfoxide (lOe). Under acidic conditions a preferential formation of the cis-sulfoxide was attained328. The stereoselective potential of this method for the oxidation of cyclic sulfides139,329 is apparent (equation 123). [Pg.468]

The potential supplied to an electrolytic cell must be at least as great as that of the cell reaction to be reversed. If there is more than one reducible species in solution, the species with the greater potential for reduction is preferentially reduced. The same principle applies to oxidation. [Pg.631]

On the other hand, Xiao et al. [215] reported that smooth, dense, and erystalline PbTe films with nearly stoichiometric composition could be obtained by an optimized electrodeposition process from highly acidic (pH 0) tellurite solutions of uncomplexed Pb(II), on Au-coated silicon wafers. The results from electroanalyti-cal studies on Te, Pb, and PbTe deposition with a Pt rde at various temperatures and solution compositions supported the induced co-deposition scheme. The microstructure and preferred orientation of PbTe films was found to change significantly with the deposition potential and electrolyte concentration. At -0.12 V vs. Ag/AgCl(sat. KCl), the film was granular and oriented preferentially in the [100] direction. At potentials more negative than -0.15 V, the film was dendritic and oriented preferentially in the [211] direction (Pig. 3.13). [Pg.127]

Electric currents in electrolyte solutions are the directed motions of ions under the influence of an applied electric field. Ions in solution are in a state of continuous kinetic molecular (thermal) motion. This motion is chaotic when an electrostatic field is not present (i.e., the ions do not move preferentially in any particular direction, and there is no current flow). [Pg.9]

The condition of specific and complete conversion of the analyte means for alternative 1 an exclusive and complete electrolytic reaction of the analyte at the working electrode with 100% current efficiency (exhaustive electrolysis), and for alternative 2 preferential and detectable complete conversion of the... [Pg.232]


See other pages where Electrolytes, preferential is mentioned: [Pg.104]    [Pg.232]    [Pg.687]    [Pg.104]    [Pg.232]    [Pg.687]    [Pg.112]    [Pg.2728]    [Pg.2748]    [Pg.306]    [Pg.130]    [Pg.101]    [Pg.295]    [Pg.213]    [Pg.374]    [Pg.371]    [Pg.1114]    [Pg.736]    [Pg.420]    [Pg.422]    [Pg.425]    [Pg.334]    [Pg.189]    [Pg.102]    [Pg.321]    [Pg.625]    [Pg.625]    [Pg.653]    [Pg.192]    [Pg.43]    [Pg.128]    [Pg.322]    [Pg.526]    [Pg.570]    [Pg.740]    [Pg.708]    [Pg.376]    [Pg.6]   


SEARCH



Electrolytes, preferential solvation

Local composition and preferential solvation in electrolyte solutions

Preferential solvation of electrolytes

© 2024 chempedia.info