Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolyte materials: Stabilized zirconia

Among the various electrolytes, yttrium stabilized zirconia (YSZ) has been developed, for use in high-temperature fuel cells and oxygen sensors similarly, various S( S")-alumina materials are in development for sodium sulfur batteries. [Pg.1823]

Another application is in tire oxidation of vapour mixtures in a chemical vapour transport reaction, the attempt being to coat materials with a tlrin layer of solid electrolyte. For example, a gas phase mixture consisting of the iodides of zirconium and yttrium is oxidized to form a thin layer of ytnia-stabilized zirconia on the surface of an electrode such as one of the lanthanum-snontium doped transition metal perovskites Lai j.Srj.M03 7, which can transmit oxygen as ions and electrons from an isolated volume of oxygen gas. [Pg.242]

Conceptually elegant, the SOFC nonetheless contains inherently expensive materials, such as an electrolyte made from zirconium dioxide stabilized with yttrium oxide, a strontium-doped lanthanum man-gaiiite cathode, and a nickel-doped stabilized zirconia anode. Moreover, no low-cost fabrication methods have yet been devised. [Pg.528]

The stability of ceramic materials at high temperatures has made them useful as furnace liners and has led to interest in ceramic automobile engines, which could endure overheating. Currently, a typical automobile contains about 35 kg of ceramic materials such as spark plugs, pressure and vibration sensors, brake linings, catalytic converters, and thermal and electrical insulation. Some fuel cells make use of a porous solid electrolyte such as zirconia, Zr02, that contains a small amount of calcium oxide. It is an electronic insulator, and so electrons do not flow through it, but oxide ions do. [Pg.737]

Four solid oxide electrolyte systems have been studied in detail and used as oxygen sensors. These are based on the oxides zirconia, thoria, ceria and bismuth oxide. In all of these oxides a high oxide ion conductivity could be obtained by the dissolution of aliovalent cations, accompanied by the introduction of oxide ion vacancies. The addition of CaO or Y2O3 to zirconia not only increases the electrical conductivity, but also stabilizes the fluorite structure, which is unstable with respect to the tetragonal structure at temperatures below 1660 K. The tetragonal structure transforms to the low temperature monoclinic structure below about 1400 K and it is because of this transformation that the pure oxide is mechanically unstable, and usually shatters on cooling. The addition of CaO stabilizes the fluorite structure at all temperatures, and because this removes the mechanical instability the material is described as stabilized zirconia (Figure 7.2). [Pg.239]

Because the potential developed across a stabilized zirconia electrolyte is simply related to the free energy of the reactions taking place in the surrounding cell, the material can be used to measure the free energy of formation of an oxide. (Details of cells and cell types for this task are outside the scope of this book and only principles will be outlined. For information on these techniques see the Further Reading section at the end of this chapter.)... [Pg.281]

Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs). Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs).
FICs are useful as electrochemical sensors, electrolytes and electrodes in batteries and in solid state displays (Farrington Briant, 1979 Ingram Vincent, 1984). If a FIC material containing mobile M ions separates two compositions with different activities of M, a potential is set up across the FIC that can be related to the difference in the chemical activities of M. By fixing the activity on one side, the unknown activity on the other can be determined. This principle forms the basis of a number of ion-selective electrodes LaFj doped with 5% SrF2 is used for monitoring fluoride ion concentration in drinking water. Similarly, calcia-stabilized-zirconia is used in cells of the type... [Pg.414]

Solid electrolytes, which show ionic conductivity in the solid state, are considered to be potential materials for practical use, some are already used as mentioned below. Solid electrolytes have characteristic functions, such as electromotive force, ion selective transmission, and ion omnipresence. Here we describe the practical use of calcia stabilized zirconia (CSZ), (Zr02)o,85(CaO)o 15, the structure and basic properties of which are discussed in detail in Sections 1.4.5 1.4.8. [Pg.208]

Another way to decrease the anodic overpotential is to intercalate a mixed conductor between the yttria stabilized zirconia electrolyte and the metallic anode. Such a combination enlarges the reaction area which theoretically lowers the anodic overpotential. Tedmon et al. [93] pointed out a significant decrease of polarization when ceria-based solid solutions like (Ce02)o.6 (LaO, 5)04 are used as anode materials for SOFCs. This effect is generally attributed to the mixed conductivity resulting from the partial reduction of Ce4+ to Ce3+ in the reducing fuel atmosphere. A similar behaviour was observed in water vapor electrolysis at high temperature when the surface zirconia electrolyte is doped with ceria [94, 95]. [Pg.115]


See other pages where Electrolyte materials: Stabilized zirconia is mentioned: [Pg.132]    [Pg.30]    [Pg.71]    [Pg.1465]    [Pg.2150]    [Pg.213]    [Pg.374]    [Pg.239]    [Pg.182]    [Pg.97]    [Pg.345]    [Pg.430]    [Pg.437]    [Pg.439]    [Pg.287]    [Pg.287]    [Pg.328]    [Pg.8]    [Pg.18]    [Pg.56]    [Pg.59]    [Pg.64]    [Pg.157]    [Pg.158]    [Pg.178]    [Pg.27]    [Pg.608]    [Pg.52]    [Pg.315]    [Pg.374]    [Pg.690]    [Pg.39]    [Pg.96]    [Pg.113]    [Pg.121]   


SEARCH



Electrolyte stability

Stability material

Zirconia electrolytes

Zirconia material

Zirconia stabilization

Zirconia stabilized

© 2024 chempedia.info